Examinando por Autor "Castro, K."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Restringido ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars(Mary Ann Liebert Publishers, 2020-03-02) Veneranda, M.; López Reyes, G.; Manrique, J. A.; Medina García, J.; Ruiz Galende, P.; Torre Fdez, I.; Castro, K.; Lantz, C.; Poulet, F.; Dypvik, H.; Werner, S. C.; Rull, F.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); European Research Council (ERC); López Reyes, G. [0000-0003-1005-1760]; Ruiz, P. [0000-0003-0181-3532]; Manrique, J. A. [0000-0002-2053-2819]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737In the present work, near-infrared, laser-induced breakdown spectroscopy, Raman, and X-ray diffractometer techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay impact structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman laser spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator can detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. Beside amorphized minerals, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps indirectly to confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was successfully evaluated.Publicación Acceso Abierto SuperCam Calibration Targets: Design and Development(Springer Link, 2020-11-26) Manrique, J. A.; López Reyes, G.; Cousin, A.; Rull, F.; Maurice, S.; Wiens, R. C.; Madariaga, M. B.; Gasnault, O.; Aramendia, J.; Arana, G.; Beck, P.; Bernard, S.; Bernardi, P.; Bernt, M. H.; Berrocal, A.; Beyssac, O.; Caïs, P.; Castro, K.; Clegg, S. M.; Cloutis, E.; Dromart, G.; Drouet, C.; Dubois, B.; Escribano, D.; Fabre, C.; Fernández, A.; Forni, O.; García Baonza, V.; Gontijo, I.; Johnson, J. R.; Laserna, J.; Lasue, J.; Madsen, S.; Mateo Martí, Eva; Medina, J.; Meslin, P.; Montagnac, G.; Moros, J.; Ollila, A. M.; Ortega, C.; Prieto Ballesteros, O.; Reess, J. M.; Robinson, S.; Rodríguez, Joseph; Saiz, J.; Sanz Arranz, J. A.; Sard, I.; Sautter, V.; Sobron, P.; Toplis, M.; Veneranda, M.; Agencia Estatal de Investigación (AEI)SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.