Examinando por Autor "Beuther, H."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A Low-mass Cold and Quiescent Core Population in a Massive Star Protocluster(IOP Science Publishing, 2021-04-29) Li, S.; Lu, X.; Zhang, Q.; Lee, C. W.; Sanhueza, P.; Beuther, H.; Jiménez Serra, I.; Qiu, K.; Palau, A.; Feng, S.; Pillai, T.; Kim, K. T.; Liu, H. L.; Girart, J. M.; Liu, T.; Wang, K.; Liu, H. B.; Li, D.; Lee, J. E.; Li, F.; Li, J.; Kim, S.; Yue, N.; National Natural Science Foundation of China (NSFC); National Research Foundation of Korea (NRF); European Research Council (ERC); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Li, S. [0000-0003-1275-5251]; Lu, X. [0000-0003-2619-9305]; Zhang, Q. [0000-0003-2384-6589]; Lee, C. W. [0000-0002-3179-6334]; Sanhueza, P. [0000-0002-7125-7685]; Beuther, H. [0000-0002-1700-090X]; Jiménez Serra, I. [0000-0003-4493-8714]; Qiu, K. [0000-0002-5093-5088]; Palau, A. [0000-0002-9569-9234]; Feng, S. [0000-0002-4707-8409]; Pillai, T. [0000-0003-2133-4862]; Kim, K. T. [0000-0003-2412-7092]; Liu, H. L. [0000-0003-3343-9645]; Girart, J. M. [0000-0002-3829-5591]; Liu, T. [0000-0002-5286-2564]; Wang, J. [0000-0001-6106-1171]; Wang, K. [0000-0002-7237-3856]; Liu, H. B. [0000-0003-2300-2626]; Li, D. [0000-0003-3010-7661]; Lee, J. E. [0000-0003-3119-2087]; Li, F. [0000-0002-9832-8295]; Li, J. [0000-0003-3520-6191]; Kim, S. [0000-0001-9333-5608]; Yue, N. [0000-0003-0355-6875]Pre-stellar cores represent the initial conditions of star formation. Although these initial conditions in nearby low-mass star-forming regions have been investigated in detail, such initial conditions remain vastly unexplored for massive star-forming regions. We report the detection of a cluster of low-mass starless and pre-stellar core candidates in a massive star protocluster-forming cloud, NGC 6334S. With the Atacama Large Millimeter/submillimeter Array (ALMA) observations at a ∼0.02 pc spatial resolution, we identified 17 low-mass starless core candidates that do not show any evidence of protostellar activity. These candidates present small velocity dispersions, high fractional abundances of NH2D, high NH3 deuterium fractionations, and are completely dark in the infrared wavelengths from 3.6 up to 70 μm. Turbulence is significantly dissipated and the gas kinematics are dominated by thermal motions toward these candidates. Nine out of the 17 cores are gravitationally bound, and therefore are identified as pre-stellar core candidates. The embedded cores of NGC 6334S show a wide diversity in masses and evolutionary stages.Publicación Acceso Abierto Fragmentation in the massive G31.41+0.31 protocluster(EDP Sciences, 2021-04-20) Beltrán, M. T.; Rivilla, V. M.; Cesaroni, R.; Maud, L. T.; Galli, D.; Moscadelli, L.; Lorenzani, A.; Ahmadi, A.; Beuther, H.; Csengeri, T.; Etoka, S.; Goddi, C.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Peters, T.; Sánchez Monge, Á.; Schilke, P.; Van der Tak, F.; Vig, S.; Zinnecker, H.; Comunidad de Madrid; Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT)Context. ALMA observations at 1.4 mm and ~0.′′2 (~750 au) angular resolution of the Main core in the high-mass star-forming region G31.41+0.31 have revealed a puzzling scenario. On the one hand, the continuum emission looks very homogeneous and the core appears to undergo solid-body rotation, suggesting a monolithic core stabilized by the magnetic field; on the other hand, rotation and infall speed up toward the core center, where two massive embedded free-free continuum sources have been detected, pointing to an unstable core having undergone fragmentation. Aims. To establish whether the Main core is indeed monolithic or if its homogeneous appearance is due to a combination of large dust opacity and low angular resolution, we carried out millimeter observations at higher angular resolution and different wavelengths. Methods. We carried out ALMA observations at 1.4 mm and 3.5 mm that achieved angular resolutions of ~0.′′1 (~375 au) and ~0.′′075 (~280 au), respectively. VLA observations at 7 mm and 1.3 cm at even higher angular resolution, ~0.′′05 (~190 au) and ~0.′′07 (~260 au), respectively, were also carried out to better study the nature of the free-free continuum sources detected in the core. Results. The millimeter continuum emission of the Main core has been clearly resolved into at least four sources, A, B, C, and D, within 1″, indicating that the core is not monolithic. The deconvolved radii of the dust emission of the sources, estimated at 3.5 mm, are ~400–500 au; their masses range from ~15 to ~26 M⊙; and their number densities are several 109 cm−3. Sources A and B, located closer to the center of the core and separated by ~750 au, are clearly associated with two free-free continuum sources, likely thermal radio jets, and are brightest in the core. The spectral energy distribution of these two sources and their masses and sizes are similar and suggest a common origin. Source C has not been detected at centimeter wavelengths, while source D has been clearly detected at 1.3 cm. Source D is likely the driving source of an E–W SiO outflow previously detected in the region, which suggests that the free-free emission might be coming from a radio jet. Conclusions. The observations have confirmed that the Main core in G31 is collapsing, that it has undergone fragmentation, and that its homogeneous appearance previously observed at short wavelengths is a consequence of both high dust opacity and insufficient angular resolution. The low level of fragmentation together with the fact that the core is moderately magnetically supercritical, suggests that G31 could have undergone a phase of magnetically regulated evolution characterized by a reduced fragmentation efficiency, eventually leading to the formation of a small number of relatively massive dense cores.Publicación Acceso Abierto The Chemical Structure of Young High-mass Star-forming Clumps. II. Parsec-scale CO Depletion and Deuterium Fraction of HCO+(The Institute of Physics (IOP), 2020-10-01) Feng, S.; Li, D.; Caselli, P.; Du, F.; Lin, Y.; Sipilä, O.; Beuther, H.; Sanhueza, P.; Tatematsu, K.; Liu, Y.; Zhang, Q.; Wang, Y.; Hogge, T.; Jiménez Serra, I.; Lu, X.; Liu, T.; Wang, K.; Zhang, Y.; Zahorecz, S.; Li, G.; Liu, H. B.; Yuan, J.; National Natural Science Foundation of China (NSFC); Max-Planck-Gesellschaft (MPG); European Research Council (ERC); Chinese Academy of Sciences (CAS); Agencia Estatal de Investigación (AEI); Japan Society for the Promotion of Science (JSPS); Feng, S. [0000-0002-4707-8409]; Li, D. [0000-0003-3010-7661]; Caselli, P. [0000-0003-1481-7911]; Du, F. [0000-0002-7489-0179]; Lin, Y. [0000-0001-9299-5479; Sipilä, O. [0000-0002-9148-1625]; Beuther, H. [0000-0002-1700-090X]; Sanhueza, P. [0000-0002-7125-7685]; Tatematsu, K. [0000-0002-8149-8546]; Liu, S. Y. [0000-0003-4603-7119]; Zhang, Q. [0000-0003-2384-6589]; Wang, Y. [0000-0003-2226-4384]; Hogge, T. [0000-0002-7211-7078]; Jiménez Serra, I. [0000-0003-4493-8714]; Lu, X. [0000-0003-2619-9305]; Liu, T. [0000-0002-5286-2564]; Wang, K. [0000-0002-7237-3856]; Zhang, Z. Y. [0000-0002-7299-2876]; Zahorecz, S. [0000-0001-6149-1278]; Li, G. [0000-0003-3144-1952]; Liu, H. B. [0000-0003-2300-2626]; Yuan, J. [0000-0001-8060-3538]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The physical and chemical properties of cold and dense molecular clouds are key to understanding how stars form. Using the IRAM 30 m and NRO 45 m telescopes, we carried out a Multiwavelength line-Imaging survey of the 70 μm-dArk and bright clOuds (MIAO). At a linear resolution of 0.1–0.5 pc, this work presents a detailed study of parsec-scale CO depletion and HCO+ deuterium (D-) fractionation toward four sources (G11.38+0.81, G15.22–0.43, G14.49–0.13, and G34.74–0.12) included in our full sample. In each source with T < 20 K and nH ~ 104–105 cm−3, we compared pairs of neighboring 70 μm bright and dark clumps and found that (1) the H2 column density and dust temperature of each source show strong spatial anticorrelation; (2) the spatial distribution of CO isotopologue lines and dense gas tracers, such as 1–0 lines of H13CO+ and DCO+, are anticorrelated; (3) the abundance ratio between C18O and DCO+ shows a strong correlation with the source temperature; (4) both the C18O depletion factor and D-fraction of HCO+ show a robust decrease from younger clumps to more evolved clumps by a factor of more than 3; and (5) preliminary chemical modeling indicates that chemical ages of our sources are ~8 × 104 yr, which is comparable to their free-fall timescales and smaller than their contraction timescales, indicating that our sources are likely dynamically and chemically young.