Examinando por Autor "Bastide, L."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover(Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Jiménez, J. J.; Boland, J.; Lemmon, M. T.; García Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Toledo, D.; Álvarez Rios, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, J.; López Heredero, R.; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, M.; Álvarez, M.; Manzano, P.; Martín, J. A.; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Córdoba, E.; Leiter, R.; Thompson, A.; Madsen, S.; Smith, M. D.; Viúdez Moreiras, Daniel; Saix López, A.; Sánchez Lavega, A.; Apéstigue, Víctor; Gómez Martín, L.; Gonzalo Melchor, Alejandro; Martínez, G. M.; de Mingo Martín, José Ramón; Gómez Elvira, J.; Martín-Ortega, Alberto; Arruego, I.; del Hoyo Gordillo, Juan Carlos; Martín-Ortega, Alberto; González Hernández, Carmen; Martín-Ortega, Alberto; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.Publicación Acceso Abierto The Polarimetric and Helioseismic Imager on Solar Orbiter(EDP Sciences, 2020-10) Solanki, S.k.; Álvarez Herrero, A.; Barandiarán, J.; Bastide, L.; Campuzano, C.; Dávila, B.; Fernández Medina, A.; García Parejo, P.; Garranzo García, D.; Laguna, H.; Martín, J,A,; Navarro, R.; Nuñez Peral, A.; Royo, M.; Sánchez, A.; Silva López, M.; Villanueva, J.; Zouganelis, I.; Cebollero Vidriales, Maria; VERA TRALLERO, ISABEL; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Centre National D'Etudes Spatiales (CNES); Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science. Methods. SO/PHI measures the Zeeman effect and the Doppler shift in the Fe※ I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line. Results. SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit.