Examinando por Autor "Arruego, I."
Mostrando 1 - 17 de 17
- Resultados por página
- Opciones de ordenación
Publicación Restringido Calibration OGSEs for multichannel radiometers for Mars atmosphere studies(Springer Link, 2018-02-01) Jiménez Martín, Juan José; Álvarez, F. J.; González Guerrero, M.; Martín, I.; Fernán, A. A.; Arruego, I.; Apéstigue, Víctor; Fernández Marín, Juan Manuel; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.Publicación Acceso Abierto Convective Vortices and Dust Devils Detected and Characterized by Mars 2020(AGU Advancing Earth and Space Science, 2023-02-10) Hueso, R.; Newman, C. E.; Del Río Gaztelurrutia, T.; Munguira, A.; Sánchez Lavega, A.; Toledo, D.; Arruego, I.; Vicente Retortillo, Á.; Martínez, G.; Lemmon, M. T.; Lorenz, Ralph; Richardson, M. I.; Viúdez Moreiras, Daniel; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Tamppari, L. K.; Murdoch, N.; Navarro López, Sara; Gómez Elvira, J.; Baker, M.; Pla García, J.; Harri, Ari-Matti; Hieta, M.; Genzer, M.; Polkko, J.; Jaakonaho, I.; Makinen, Terhi; Stott, Alexander; Mimoun, D.; Chide, B.; Sebastián Martínez, Eduardo; Banfield, D.; Lepinette Malvitte, A.; Apéstigue, Víctor; Gobierno Vasco; Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Los Alamos National Laboratory (LANL); Arizona State University (ASU); Universities Space Research Association (USRA); NASA Jet Propulsion Laboratory (JPL); Comunidad de Madrid; Academy of Finland (AKA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We characterize vortex and dust devils (DDs) at Jezero from pressure and winds obtained with the Mars Environmental Dynamics Analyzer (MEDA) instrument on Mars 2020 over 415 Martian days (sols) (Ls = 6°–213°). Vortices are abundant (4.9 per sol with pressure drops >0.5 Pa correcting from gaps in coverage) and they peak at noon. At least one in every five vortices carries dust, and 75% of all vortices with Δp > 2.0 Pa are dusty. Seasonal variability was small but DDs were abundant during a dust storm (Ls = 152°–156°). Vortices are more frequent and intense over terrains with lower thermal inertia favoring high daytime surface-to-air temperature gradients. We fit measurements of winds and pressure during DD encounters to models of vortices. We obtain vortex diameters that range from 5 to 135 m with a mean of 20 m, and from the frequency of close encounters we estimate a DD activity of 2.0–3.0 DDs km−2 sol−1. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls = 45° produces a similar result. Three 100-m size DDs passed within 30 m of the rover from what we estimate that the activity of DDs with diameters >100 m is 0.1 DDs km−2sol−1, implying that dust lifting is dominated by the largest vortices in Jezero. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms−1. The MEDA wind sensors were partially damaged during two DD encounters whose characteristics we elaborate in detail.Publicación Restringido DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander(Elsevier, 2017-07-01) Arruego, I.; Jiménez Martín, Juan José; Martínez Oter, J.; Álvarez Ríos, F. J.; González Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez Michavila, M.; Yela González, M.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), “Schiaparelli”. DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands – Ultraviolet (UV) and near infrared (NIR) – which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.Publicación Acceso Abierto Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS)(GU Advancing Earth and Space Science, 2023-01-17) Toledo, D.; Arruego, I.; Lemmon, M. T.; Gómez, L.; Montoro, F.; Hueso, R.; Newman, C. E.; Smith, M.; Viúdez Moreiras, Daniel; Martínez, G.; Vicente Retortillo, Á.; Sánchez Lavega, Agustín; De la Torre Juarez, M.; Rodríguez Manfredi, J. A.; Carrasco, I.; Yela González, M.; Jiménez, J. J.; García Menéndez, Elisa; Navarro, Sara; Gómez Elvira, J.; Harri, Ari-Matti; Polkko, J.; Hieta, M.; Genzer, M.; Murdoch, N.; Sebastián, E.; Apéstigue, Víctor; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Gobierno VascoThe Mars Environmental Dynamics Analyzer, onboard the Perseverance rover, is a meteorological station that is operating on Mars and includes, among other sensors, the radiometer Radiation and Dust Sensor (RDS). From RDS irradiance observations, a total of 374 dust devils (DDs) were detected for the first 365 sols of the mission (Ls = 6°–182°), which along with wind and pressure measurements, we estimated a DD frequency of formation at Jezero between 1.3 and 3.4 DD km−2 sol−1 (increasing as we move from spring into summer). This frequency is found to be smaller than that estimated at the Spirit or Pathfinder landing sites but much greater than that derived at InSight landing site. The maximum in DD frequency occurs between 12:00 and 13:00 local true solar time, which is when the convective heat flux and lower planetary boundary layer IR heating are both predicted to peak in Jezero crater. DD diameter, minimum height, and trajectory were studied showing (a) an average diameter of 29 m (or a median of 25 m) and a maximum and minimum diameter of 132 ± 63.4 and 5.6 ± 5.5 m; (b) an average minimum DD height of 231 m and a maximum minimum-height of 872 m; and (c) the DD migration direction is in agreement with wind measurements. For all the cases, DDs decreased the UV irradiance, while at visible or near-IR wavelengths both increases and decreases were observed. Contrary to the frequency of formation, these results indicate similar DD characteristics in average for the studied period.Publicación Acceso Abierto Hexagonal Prisms Form in Water-Ice Clouds on Mars, Producing Halo Displays Seen by Perseverance Rover(AGU Advancing Earth and Space Science, 2022-10-03) Lemmon, M. T.; Toledo, D.; Arruego, I.; Wolff, M. J.; Patel, P.; Guzewich, S.; Colaprete, A.; Vicente Retortillo, Á.; Tamppari, L. K.; Montmessin, F.; De la Torre Juarez, M.; Maki, Justin N.; McConnochie, T.; Brown, Adrian Jon; Bell, J. F.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); Ministerio de Economía y Competitividad (MINECO); Gobierno Vasco; European Research Council (ERC); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 μm in diameter and length. From a possible 40–50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3–12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.Publicación Acceso Abierto Mars 2020 Perseverance Rover Studies of the Martian Atmosphere Over Jezero From Pressure Measurements(AGU Advancing Earth and Space Science, 2022-11-01) Sánchez Lavega, A.; Del Río Gaztelurrutia, T.; Hueso, R.; De la Torre Juarez, M.; Martínez, G. M.; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Polkko, J.; Rodríguez Manfredi, J. A.; Lemmon, M. T.; Pla García, J.; Toledo, D.; Vicente Retortillo, Á.; Viúdez Moreiras, Daniel; Munguira, A.; Tamppari, L. K.; Newman, C. E.; Gómez Elvira, J.; Guzewich, S. D.; Bertrand, T.; Arruego, I.; Wolff, Michael; Banfield, D.; Jaakonaho, I.; Mäkinen, T.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); National Aeronautics and Space Administration (NASA); Universities Space Research Association (USRA); Gobierno Vasco; Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from Ls ∼ 13°–241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2–5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8–24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1–150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at Ls ∼ 155°.Publicación Restringido Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM(Elsevier, 2017-01-20) Toledo, D.; Arruego, I.; Jiménez, J. J.; Gómez, L.; Yela González, M.; Rannou, P.; Pommereau, J. P.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO)"The solar irradiance sensor (SIS) was included in the DREAMS package onboard the ExoMars 2016 Entry Descent and Landing Demonstrator Module, and has been selected in the METED meteorological station onboard the ExoMars 2020 Lander. This instrument is designed to measure at different time intervals the scattered flux or the sum of direct flux and scattered flux in UVA (315-400 nm) and NIR (700-1100 nm) bands. For SIS'16, these measurements are performed by a total of 3 sensors per band placed at the faces of a truncated tetrahedron with face inclination angles of 60. The principal goal of SIS'16 design is to perform measurements of the dust opacity in UVA and NIR wavelengths ranges, crucial parameters in the understanding of the Martian dust cycle. The retrieval procedure is based on the use of radiative transfer simulations to reproduce SIS observations acquired during daytime as a function of dust opacity. Based on different sensitivity analysis, the retrieval procedure also requires to include as free parameters (1) the, dust effective radius; (2) the dust effective variance; and (3) the imaginary part of the refractive index of dust particles in UVA band. We found that the imaginary part of the refractive index of dust particles does not have a big impact on NIR signal, and hence we can kept constant this parameter in the retrieval of dust opacity at this channel. In addition to dust opacity measurements, this instrument is also capable to detect and characterize clouds by looking at the time variation of the color index (CI), defined as the ratio between the observations in NIR and UVA channels, during daytime or twilight. By simulating CI signals with a radiative transfer model, the cloud opacity and cloud altitude (only during twilight) can be retrieved. Here the different retrieval procedures that are used to analyze SIS measurements, as well as the results obtained in different sensitivity analysis, are presented and discussed."Publicación Acceso Abierto MOURA magnetometer for Mars MetNet Precursor Mission. Its potential for an in situ magnetic environment and surface characterization(Universidad Complutense de Madrid, 2016-10-14) Díaz Michelena, M.; Sanz, R.; Belén Fernández, A.; De Manuel, V.; Cerdán, M. F.; Arruego, I.; Domínguez, J. A.; González, Miguel; Guerrero, H.; Dolores Sabau, M.; Kilian, R.; Baeza, O.; Ríos, F.; Herraiz, M.; Vázquez, L.; Tordesillas, J. M.; Covisa, P.; Aguado, J.; Apéstigue, Víctor; Ministerio de Economía y Competitividad (MINECO)El magnetómetro y gradiómetro MOURA forma parte de la instrumentación científica de la misión precursora de MetNet a Marte. En este trabajo se describen los objetivos de esta investigación, se recopilan las tareas de diseño y desarrollo del mismo así como su posterior calibración y se muestran las principales acciones de demostración emprendidas con el instrumento que muestran su capacidad para medidas magnéticas a bordo de aterrizadores y rovers. MOURA magnetometer and gradiometer is part of the scientific instrumentation for Mars MetNet Precursor mission. This work describes the objective of the investigation, summarizes the work done in the design and development of the sensor as well as its calibration, and shows the demonstration campaigns to show the potential of such instrument for planetary landers and roversPublicación Acceso Abierto OWLS: a ten-year history in optical wireless links for intra-satellite communications(Institute of Electrical and Electronics Engineers 27(9): 1599-1611(2009), 2009-12-10) Arruego, I.; Guerrero, H.; Rodríguez, Santiago; Martínez Oter, J.; Jiménez, J. J.; Domínguez, J. A.; Rivas, J.; Álvarez, M. T.; Gallego, P.; Azcue, J.; Ruiz de Galarreta, C.; Martín, B.; Álvarez Herrero, A.; Díaz Michelena, M.; Martín, I.; Tamayo, R.; Reina, M.; Gutiérrez, M. J.; Sabau, L.; Torres, J.; Martín-Ortega, Alberto; Martín-Ortega, Alberto; de Mingo Martín, José Ramón; Apéstigue, Víctor; Sánchez - Valdepeñas García - Moreno, Jesús; Samblas Iglesias, JuanThe application of Optical Wireless Links to intra- Spacecraft communications (OWLS) is presented here. This work summarizes ten years of developments, ranging from basic optoelectronic parts and front-end electronics, to different inorbit demonstrations. Several wireless applications were carried out in representative environments at ground level, and on in-flight experiments. A completely wireless satellite will be launched at the beginning of 2010. The benefits of replacing standard data wires and connectors with wireless systems are: mass reduction, flexibility, and simplification of the Assembly, Integration and Tests phases (AIT). However, the Aerospace and Defense fields need high reliability solutions. The use of COTS (Commercial-Off-The- Shelf) parts in these fields require extensive analyses in order to attain full product assurance. The current commercial optical wireless technology needs a deep transformation in order to be fully applicable in the aforementioned fields. Finally, major breakthroughs for the implementation of optical wireless links in Space will not be possible until dedicated circuits such as mixed analog/digital ASICs are developed. Once these products become available, it will also be possible to extend optical wireless links to other applications, such as Unmanned Air and Underwater Vehicles (UAV and UUV). The steps taken by INTA to introduce Optical Wireless Links in the Space environment are presented in this paper.Publicación Restringido Proton monitor las dos torres: First Intercomparison of In-Orbit Results(Institute of Electrical and Electronics Engineers, 2012-03-09) Jiménez, J. J.; Oter, J. M.; Hernando, C.; Ibarmia, S.; Hajdas, W.; Sanchez Péramo, J.; Álvarez, Maite; Arruego, I.; Guerrero, H.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA)A new proton monitor on board NANOSAT-1B-Las Dos Torres (translated: The Two Towers)-and its preliminary results after two years in orbit and its intercomparison to a RadFET and to trapped proton models are presented. This satellite was fully developed by INTA (National Institute of Aerospace Technology, Spain) and was launched on July 29, 2009. The instrument includes two stacks of radiation-sensing elements: the "dark" and "light" towers. The displacement damage was measured, both through the increase of a photodiode dark current ("dark tower") and the decrease of the photocurrent signal in a photodiode optically linked to light emitting diodes ("light tower"). The instrument was also designed to monitor the ionization current of the photodiodes and the variations in the proton flux in the South Atlantic Anomaly.Publicación Acceso Abierto Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover(Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Jiménez, J. J.; Boland, J.; Lemmon, M. T.; García Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Toledo, D.; Álvarez Rios, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, J.; López Heredero, R.; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, M.; Álvarez, M.; Manzano, P.; Martín, J. A.; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Córdoba, E.; Leiter, R.; Thompson, A.; Madsen, S.; Smith, M. D.; Viúdez Moreiras, Daniel; Saix López, A.; Sánchez Lavega, A.; Apéstigue, Víctor; Gómez Martín, L.; Gonzalo Melchor, Alejandro; Martínez, G. M.; de Mingo Martín, José Ramón; Gómez Elvira, J.; Martín-Ortega, Alberto; Arruego, I.; del Hoyo Gordillo, Juan Carlos; Martín-Ortega, Alberto; González Hernández, Carmen; Martín-Ortega, Alberto; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.Publicación Acceso Abierto Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument(AGU Advancing Earth and Space Science, 2023-02) Martínez, G. M.; Sebastián, E.; Vicente Retortillo, Á.; Smith, Michael; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez Lavega, A.; Lemmon, M. T.; Gómez, F.; Polkko, J.; Mandon, Lucía; Arruego, I.; Ramos, M.; Conrad, Pamela G.; Newman, C. E.; De la Torre Juarez, M.; Jordan, Francisco; Tamppari, L. K.; Mcconnochie, T. H.; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Zorzano, María Paz; Siegler, M.; Prieto Ballesteros, O.; Molina, A.; Rodríguez Manfredi, J. A.; Apéstigue, Víctor; Comunidad de Madrid; Universities Space Research Association (USRA); Agencia Estatal de Investigación (AEI); Gobierno Vasco; Instituto Nacional de Técnica Aeroespacial (INTA); Centre National D'Etudes Spatiales (CNES); National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-its-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) to determine the surface radiative budget on Mars and to calculate the broadband albedo (0.3–3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical thermal models. We found that (a) the observed downwelling atmospheric IR flux is significantly lower than the model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (b) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (c) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (d) Averages of albedo and thermal inertia (spatial resolution of ∼3–4 m2) along Perseverance's traverse are in very good agreement with collocated retrievals of thermal inertia from Thermal Emission Imaging System (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25–2.9 μm range from (spatial resolution of ∼300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.Publicación Restringido Techniques to verify the sampling system and flow characteristics of the sensor MicroMED for the ExoMars 2022 Mission(Elsevier, 2021-08-21) Cozzolino, F.; Franzese, G.; Mongelluzzo, G.; Molfese, C.; Esposito, F.; Cosimo Ruggeri, A.; Porto, C.; Silvestro, S.; Popa, C. I.; Mennella, V.; Scaccabarozzi, D.; Saggin, B.; Ortega Rico, A. M.; Arruego, I.; Santiuste, Nuria; Brienza, D.; Cortecchia, F.; de Mingo Martín, José Ramón; Instituto Nacional de Técnica Aeroespacial (INTA); Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF)Suspended dust has a prominent role in Martian climatology. Several significant dust related phenomena can be observed at various scales, starting from global dust storms to local dust devils, which have important effects such as the increase of troposphere temperature, the modification of the wind regime and the localized motion of sand at the surface. These phenomena depend on dust grain characteristics such as the size distribution or the chemical and bulk composition. Currently, we do not have direct measurement of the dust properties; the only available information in this regard are derived from spectrometric measurements, optical depth, and albedo coming from instruments aboard satellites and in-situ. Herein, we describe the tests performed on the optical particle counter named MicroMED, designed and built to perform the first ever direct in-situ measurement of suspended dust grains in the Martian atmosphere close to the surface. MicroMED is a dust particle size analyzer which was selected to join the Dust Complex payload aboard the ESA/Roscosmos ExoMars 2022 mission. It has the capability to suck in dust that is suspended in atmosphere and to measure the sizes of single grain. The sensor sucks in the dust grains using a sampling system, guides the grains through ducts and concentrates them in an area illuminated by laser. Detecting the intensity of the light scattered by the grains during the crossing through the illuminated area, it is possible to determinate the size of grain. Here we present the innovative techniques in order to verify the performances in terms of dust suction efficiency of the MicroMED Flight Model, using a prototype called MM1.Publicación Acceso Abierto The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars(Nature Publishing Group, 2023-01-09) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán; Lemmon, M. T.; Newman, C. E.; Munguira, A.; Hieta, M.; Tamppari, L. K.; Polkko, J.; Toledo, D.; Sebastian, D.; Smith, M. D.; Jaakonaho, I.; Genzer, M.; Vicente Retortillo, Á.; Viúdez Moreiras, Daniel; Ramos, M.; Saiz López, A.; Lepinette, A.; Wolff, M.; Sullivan, R. J.; Gómez Elvira, J.; Conrad, P.; Del Río Gaztelurrutia, T.; Murdoch, N.; Arruego, I.; Banfield, D.; Boland, J.; Brown, Adrian Jon; Ceballos, J.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Ferrándiz Guibelalde, Ricardo; Fischer, E.; García Villadangos, M.; Giménez Torregrosa, S.; Gómez Gómez, F.; Guzewich, S. D.; Harri, Ari-Matti; Jiménez Martín, Juan José; Jiménez, V.; Makinen, Terhi; Marín Jiménez, M.; Martín Rubio, C.; Martín Soler, J.; Molina, A.; Mora Sotomayor, L.; Navarro, Sara; Peinado, V.; Pérez Grande, I.; Pla García, J.; Postigo, M.; Prieto Ballesteros, O.; Rafkin, S. C. R.; Richardson, M. I.; Romeral, J.; Savijärv, H.; Schofield, J. T.; Torres, J.; Urquí, R.; Apéstigue, Víctor; Zurita, S.; Romero Guzman, Catalina; NASA Jet Propulsion Laboratory (JPL); National Aeronautics and Space Administration (NASA); Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); California Institute of Technology (CIT); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both comPublicación Restringido The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season(Elsevier, 2018-02-01) Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, Enrico; Ferri, F.; Marty, Laurent; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, Edoardo; Ari-Matti, H.; Montmessin, F.; Wilson, Colin; Arruego, I.; Abbaki. S.; Bellucci, G.; Berthelier, J. J.; Calcutt, S.; Forget, F.; Genzer, M.; Gilbert, Pierre; Haukka, H.; Jiménez, Juan J.; Jiménez, Salvador; Josset, J. L.; Karatekin, Özgür; Landis, G.; Lorenz, Ralph; Martínez Oter, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Patel, M.; Pommereau, J. P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Rennó, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vázquez, L.; Apéstigue, Víctor; Agenzia Spaziale Italiana (ASI); Istituto Nazionale di Astrofisica (INAF)"The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency."Publicación Acceso Abierto The dynamic atmospheric and aeolian environment of Jezero crater, Mars(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Á.; Martínez, G. M.; Toledo, D.; Sullivan, R.; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A. E.; Murdoch, N.; Sánchez Lavega, A.; Wolff, M. J.; Arruego, I.; Sebastián, E.; Navarro, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, M. D.; Lepinette, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, M.; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, F.; Mcconnochie, T. H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María Paz; Mora, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, S. D.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.Publicación Acceso Abierto The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Arruego, I.; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Á.; Domínguez Pumar, M.; Espejo, S.; Fairén, A.; Fernández Palma, A.; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, M.; Giménez, Á.; Gómez Elvira, J.; Gómez, F.; Guzewich, S. D.; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez, J. J.; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette, A.; Lemmon, M. T.; López, G.; Madsen, N. S.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro, Sara; Newman, C. E.; Ortega, C.; Parrondo, M. C.; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto Ballesteros, O.; Rafkin, S. C. R.; Ramos, M.; Richardson, M. I.; Romeral, J.; Runyon, K. D.; Saiz López, A.; Sánchez Lavega, A.; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, M. D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Apéstigue, Víctor; Ferrándiz, Ricardo; Romero Guzman, Catalina; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.