Examinando por Autor "Ade, P."
Mostrando 1 - 6 de 6
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Calibration and performance of the NIKA2 camera at the IRAM 30-m Telescope.(EDP Sciences, 2020-05-18) Perotto, L.; Ponthieu, N.; Marcías Pérez, J. F.; Adam, R.; Ade, P.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoit, A.; Berta, S.; Bideaud, A.; Bourrion, O.; Calvo, M.; Catalano, A.; Comis, B.; De Petris, M.; Désert, F. X.; Doyle, S.; Driessen, E. F. C.; Gómez, A.; Goupy, J.; John, D.; Kéruzoré, F.; Kramer, C.; Ladjelate, B.; Lagache, G.; Leclercq, S.; Lestrade, L. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Navarro, Sara; Peñalver, J.; Pierfederici, F.; Pisano, G.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Shu, S.; Sievers, A.; Tucker, C.; Zylka, R.; Díaz García, Pedro; Romero Guzman, Catalina; Agence Nationale de la Recherche (ANR); European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Centre National D'Etudes Spatiales (CNES); 0000-0001-6937-5052; 0000-0002-3101-0768; 0000-0002-5385-2763; 0000-0001-6478-7883; 0000-0001-9995-4792; 0000-0002-8752-1401; 0000-0001-7859-2139; 0000-0002-6370-2101; 0000-0001-6397-5516; 0000-0002-1371-5705; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. NIKA2 is a dual-band millimetre continuum camera of 2 900 kinetic inductance detectors, operating at 150 and 260 GHz, installed at the IRAM 30-m telescope in Spain. Open to the scientific community since October 2017, NIKA2 will provide key observations for the next decade to address a wide range of open questions in astrophysics and cosmology. Aims. Our aim is to present the calibration method and the performance assessment of NIKA2 after one year of observation. Methods. We used a large data set acquired between January 2017 and February 2018 including observations of primary and secondary calibrators and faint sources that span the whole range of observing elevations and atmospheric conditions encountered by the IRAM 30-m telescope. This allowed us to test the stability of the performance parameters against time evolution and observing conditions. We describe a standard calibration method, referred to as the "Baseline" method, to translate raw data into flux density measurements. This includes the determination of the detector positions in the sky, the selection of the detectors, the measurement of the beam pattern, the estimation of the atmospheric opacity, the calibration of absolute flux density scale, the flat fielding, and the photometry. We assessed the robustness of the performance results using the Baseline method against systematic effects by comparing results using alternative methods. Results. We report an instantaneous field of view of 6.5 ' in diameter, filled with an average fraction of 84%, and 90% of valid detectors at 150 and 260 GHz, respectively. The beam pattern is characterised by a FWHM of 17.6 '' +/- 0.1 '' and 11.1 '' +/- 0.2 '', and a main-beam efficiency of 47%+/- 3%, and 64%+/- 3% at 150 and 260 GHz, respectively. The point-source rms calibration uncertainties are about 3% at 150 GHz and 6% at 260 GHz. This demonstrates the accuracy of the methods that we deployed to correct for atmospheric attenuation. The absolute calibration uncertainties are of 5%, and the systematic calibration uncertainties evaluated at the IRAM 30-m reference Winter observing conditions are below 1% in both channels. The noise equivalent flux density at 150 and 260 GHz are of 9 +/- 1 mJy s(1/2) and 30 +/- 3 mJy s(1/2). This state-of-the-art performance confers NIKA2 with mapping speeds of 1388 +/- 174 and 111 +/- 11 arcmin(2) mJy(-2) h(-1) at 150 and 260 GHz. Conclusions. With these unique capabilities of fast dual-band mapping at high (better that 18 '') angular resolution, NIKA2 is providing an unprecedented view of the millimetre Universe.Publicación Acceso Abierto Exploiting NIKA2/XMM-Newton imaging synergy for intermediate-mass high-z galaxy clusters within the NIKA2 SZ large program(EDP Sciences, 2020-12-04) Kéruzoré, F.; Mayet, F.; Pratt, G. W.; Adam, R.; Ade, P.; André, P.; Andrianasolo, A.; Arnaud, M.; Aussel, H.; Bartalucci, I.; Beelen, A.; Benoit, A.; Berta, S.; Bourrion, O.; Calvo, M.; Catalano, A.; De Petris, M.; Désert, F. X.; Doyle, S.; Driessen, E. F. C.; Gómez, A.; Goupy, J.; Kramer, C.; Ladjelate, B.; Lagache, G.; Leclercq, S.; Lestrade, L. F.; Marcías Pérez, J. F.; Mauskopf, P.; Monfardini, A.; Perotto, L.; Pisano, G.; Pointecouteau, E.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Shu, S.; Sievers, A.; Tucker, C.; Romero Guzman, Catalina; Agence Nationale de la Recherche (ANR); European Commission (EC); National Aeronautics and Space Administration (NASA); Kéruzoré, F. h[0000-0002-9605-5588]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737High-resolution mapping of the intracluster medium (ICM) up to high redshift and down to low masses is crucial to derive accurate mass estimates of the galaxy cluster and to understand the systematic effects affecting cosmological studies based on galaxy clusters. We present a spatially resolved Sunyaev-Zel'dovich (SZ)/X-ray analysis of ACT-CL J0215.4+0030, a high-redshift (z=0.865) galaxy cluster of intermediate mass (M-500 similar or equal to 3.5x10(14) M-circle dot) observed as part of the ongoing NIKA2 SZ large program, which is a follow-up of a representative sample of objects at 0.5 <= z <= 0.9. In addition to the faintness and small angular size induced by its mass and redshift, the cluster is contaminated by point sources that significantly affect the SZ signal. This is therefore an interesting case study for the most challenging sources of the NIKA2 cluster sample. We present the NIKA2 observations of this cluster and the resulting data. We identified the point sources that affect the NIKA2 maps of the cluster as submillimeter galaxies with counterparts in catalogs of sources constructed by the SPIRE instrument on board the Herschel observatory. We reconstructed the ICM pressure profile by performing a joint analysis of the SZ signal and of the point-source component in the NIKA2 150 GHz map. This cluster is a very weak source that lies below the selection limit of the Planck catalog. Nonetheless, we obtained high-quality estimates of the ICM thermodynamical properties with NIKA2. We compared the pressure profile extracted from the NIKA2 map to the pressure profile obtained from X-ray data alone by deprojecting the public XMM-Newton observations of the cluster. We combined the NIKA2 pressure profile with the X-ray deprojected density to extract detailed information on the ICM. The radial distribution of its thermodynamic properties (the pressure, temperature and entropy) indicate that the cluster has a highly disturbed core. We also computed the hydrostatic mass of the cluster, which is compatible with estimations from SZ and X-ray scaling relations. We conclude that the NIKA2 SZ large program can deliver quality information on the thermodynamics of the ICM even for one of its faintest clusters after a careful treatment of the contamination by point sources.Publicación Acceso Abierto GASTON: Galactic Star Formation with NIKA2 – evidence for the mass growth of star-forming clumps(Oxford Academics: Oxford University Press, 2021-01-25) Rigby, A. J.; Peretto, N.; Adam, R.; Ade, P.; Anderson, M.; André, P.; Andrianasolo, A.; Aussel, H.; Bacmann, A.; Beelen, A.; Benoit, A.; Berta, S.; Bourrion, O.; Bracco, A.; Calvo, M.; Catalano, A.; De Petris, M.; Désert, F. X.; Doyle, S.; Driessen, E. F. C.; Gómez, A.; Goupy, J.; Kéruzoré, F.; Kramer, C.; Ladjelate, B.; Lagache, G.; Leclercq, S.; Lestrade, L. F.; Marcías Pérez, J. F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ristorcelli, I.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Shu, S.; Sievers, A.; Tucker, C.; Watkins, E. J.; Díaz García, Pedro; Romero Guzman, Catalina; Science and Technology Facilities Council (STFC); National Aeronautics and Space Administration (NASA); European Research Council (ERC); European Commission (EC); Ritacco, A. [0000-0003-0162-8206]; Rigby, A. J. [0000-0002-3351-2200]; Peretto, N. [0000-0002-6893-602X]; Bacmann, A. [0000-0003-1263-4986]Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane (GP) in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope that is mapping ≈2 deg2 of the inner GP, centred on ℓ = 23∘.9, b = 0∘.05, as well as targets in Taurus and Ophiuchus in 1.15- and 2.00-mm continuum wavebands. In this paper, we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15-mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously undetected clumps. Approximately 80 per cent of these new clumps are 70-μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.Publicación Acceso Abierto The EChO science case(Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Schrader, J. R.; Scholz, A.; Watkins, C.; Maillard, J. P.; Abreu, M.; Glasse, A.; Testi, L.; Doel, P.; Magnes, W.; Licandro Goldaracena, J.; Wawer, P.; Zapatero Osorio, M. R.; Decin, L.; Sánz Forcada, J.; Vakili, F.; Aylward, A.; Swain, M.; Sozzetti, A.; Filacchione, G.; Delgado Mena, E.; Read, P.; Lognonné, P.; Irshad, R.; Coates, A.; Cecchi Pestellini, C.; Thrastarson, H.; Brown, L.; Guillot, T.; Strazzulla, G.; Barstow, J. K.; Budaj, J.; Morgante, G.; Pietrzak, R.; Leconte, J.; Hersant, F.; De Sio, A.; Grassi, D.; Selsis, F.; Jarchow, C.; Fouqué, P.; Del Vecchio, C.; Tennyson, J.; Cassan, A.; Fernández Hernández, Maite; Burleigh, M. R.; Cordier, D.; De Witt, J.; Pagano, I.; Ray, T.; Gambicorti, L.; Palla, F.; Maldonado, J.; Biondi, D.; Eiroa, C.; Winek, W.; Ade, P.; Villaver, E.; Temple, J.; Gear, W.; Thompson, S.; Dominic, C.; Galand, M.; Focardi, M.; Cockell, C.; Pace, E.; Dorfi, E.; Bryson, I.; Cavarroc, C.; Pilat Lohinger, E.; Smith, A.; Eymet, V.; MacTavish, C.; Morales, J. C.; Gómez, H.; Stamper, R.; Esposito, M.; Andersen, A.; Azzollini, R.; Maxted, P.; Allende Prieto, C.; Nelson, R.; Gillon, M.; Achilleos, N.; Buchhave, L. A.; Fabrizio, N.; Ciaravella, A.; Claudi, R.; Damasso, M.; Bordé, P.; Figueira, P.; Rickman, H.; Rees, J. M.; Sitek, P.; Fossey, S.; Bakos, G.; Pascale, E.; Laken, B.; Soret, L.; Femenía Castella, B.; Allard, F.; Amado, P. J.; Luzzi, D.; Colomé, J.; Galand, M.; Lammer, H.; Bonford, B.; López Valverde, M. A.; Kerins, E.; Yung, Y.; Espinoza Contreras, M.; Irwin, P.; Herrero, E.; Wright, G.; Guàrdia, J.; Banaszkiewicz, M.; Hoogeeven, R.; Alcala, J.; Guio, P.; Koskinen, T.; Barton, E. J.; Piskunov, N.; Maurin, A. S.; Leto, G.; Boisse, I.; Claret, A.; Massi, F.; Kervella, P.; Börne, P.; Heiter, U.; Hargrave, P.; Fletcher, L.; Sánchez Béjar, V. J.; Bézard, B.; Cabral, A.; Michaut, C.; Winter, B.; Sousa, S.; Giuranna, M.; Batista, V.; Frith, J.; Ballerini, P.; López Morales, M.; Monteiro, M.; Tingley, B. W.; Lanza, N.; Maggio, A.; Lundgaard Rasmussen, I.; Altieri, F.; Covino, E.; Coustenis, A.; Heredero, R. L.; Watson, D.; Coudé du Foresto, V.; Liu, S. J.; Sicardy, B.; Deeg, H. J.; Moses, J.; Rodler, F.; Lithgow Bertelloni, C.; Demangeon, O.; Adybekian, V.; Fletcher, L.; Swinyard, B.; Morales Calderón, M.; Fouqué, P.; Deroo, P.; Lo Cicero, Ugo; Hueso, R.; Iro, N.; González Merino, B.; López Puertas, M.; Capria, M. T.; Danielski, C.; Branduardi Raymont, G.; Luntzer, A.; Gaulme, P.; Bulgarelli, A.; Parmentier, V.; Gerard, J. C.; Alard, C.; Frith, J.; Dobrijévic, M.; Medvedev, A.; Barrado, D.; Jacquemoud, S.; Sethenadh, J.; Readorn, K.; Polichtchouk, I.; Petrov, R.; García Piquer, A.; Tabernero, H. M.; White, G.; Pancrazzi, M.; García López, Ramón; Filacchione, G.; Gómez Leal, I.; Rengel, M.; Gesa, L.; Tanga, P.; Mueller Wodarg, I.; Israelian, G.; Rebolo López, R.; Shore, S.; Peralta, J.; Collura, A.; Giro, E.; Del Val Borro, M.; Griffith, C.; Tecsa, M.; Haigh, J.; Moro Martín, A.; Jones, H.; Gizon, L.; Pezzuto, S.; Giani, E.; Mall, U.; Eales, S.; Graczyk, R.; Ramos Zapata, G.; Krupp, N.; Sánchez Lavega, A.; Fossey, S.; Alonso Floriano, F. J.; Justtanot, K.; Santos, N.; Pérez Hoyos, S.; Savini, G.; Chamberlain, S.; Bowles, N.; Kerschbaum, F.; Tozzi, A.; Turrini, D.; Kipping, D.; Maruquette, J. B.; Correira, A.; Trifoglio, M.; Agúndez, Marcelino; Scandaratio, G.; Snellen, I. A.; Scuderi, S.; Femenía Castella, B.; Prisinzano, L.; Oliva, E.; Hébrard, E.; Lodieu, N.; Forget, F.; Chadney, J.; Showman, A.; Gustin, J.; Vinatier, S.; Charnoz, S.; Affer, L.; Rank Lüftinger, T.; Poretti, E.; Lahav, O.; North, C.; Gerard, J. C.; Murgas Alcaino, F.; Yurchenko, S. N.; Widemann, T.; Ward Thompson, D.; Montañés Rodríguez, P.; Kovács, G.; Valdivieso, M. L.; Moya Bedon, A.; Montalto, M.; Christian Jessen, N.; Venot, O.; Koskinen, T.; Lagage, P. O.; Bellucci, G.; Prinja, R.; Pinfield, D.; Banaszkiewicz, M.; Waldmann, I.; Jones, G.; Morello, G.; Crook, J.; Lim, T.; Parviainen, H.; Pallé, E.; Ramos, A. A.; Sanromá, E.; Waters, R.; Morais, H.; Stiepen, A.; Lellouch, E.; Orton, G.; Rezac, L.; Beaulieu, J. P.; Focardi, M.; Mauskopf, P.; Barlow, M.; Guedel, M.; Waltham, D.; Agnor, C.; Encrenaz, T.; Cerulli, R.; Balado, A.; Bouy, H.; Rebordao, J.; Stolarski, M.; Álvarez Iglesias, C. A.; Adriani, A.; Rocchetto, M.; Norgaard Nielsen, H. U.; Hollis, M.; Selig, A.; Malaguti, G.; Burston, R.; Peña Ramírez, K. Y.; Schmider, F. X.; Baffa, C.; Heyrovsky, D.; Figueira, P.; Piccioni, G.; Ottensamer, R.; Radioti, A.; Yelle, R.; Pantin, E.; Miles Paez, P.; Belmonte Avilés, J. A.; Montes, D.; Varley, R.; Viti, S.; Abe, L.; Pinsard, F.; Tessenyi, M.; Di Giorgio, A.; Turrini, D.; Terenzi, L.; Hubert, B.; Griffin, M.; Barber, R. J.; Cole, R.; Gianotti, F.; Blecka, M.; Wawrzaszk, A.; Middleton, K.; De Kok, R.; Martín Torres, Javier; Kehoe, T.; Cho, J.; Machado, P.; Berry, D.; Wisniowski, T.; Grodent, D.; Rataj, M.; Hornstrup, A.; Kerschbaum, F.; Vandenbussche, B.; Stixrude, L.; González Hernández, Carmen; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Bulgarelli, A. [0000-0001-6347-0649]; Morales Calderon, M. [0000-0001-9526-9499]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; López Valverde, M. A. [0000-0002-7989-4267]; Gillon, M. [0000-0003-1462-7739]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pancrazzi, M. [0000-0002-3789-2482]; Pilat Lohinger, E. [0000-0002-5292-1923]; Altieri, F. [0000-0002-6338-8300]; Malaguti, G. [0000-0001-9872-3378]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Kovacs, G. [0000-0002-2365-2330]; Guillot, T. [0000-0002-7188-8428]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Olivia, E. [0000-0002-9123-0412]; Tizzi, A. [0000-0002-6725-3825]; Selsis, F. [0000-0001-9619-5356]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Gear, W. [0000-0001-6789-6196]; Damasso, M. [0000-0001-9984-4278]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Maldonado, J. [0000-0002-4282-1072]; Pace, E. [0000-0001-5870-1772]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Claret, A. [0000-0002-4045-8134]; Rodríguez, P. [0000-0002-6855-9682]; Bezard, B. [0000-0002-5433-5661]; Gómez, H. [0000-0003-3398-0052]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Hornstrup, A. [0000-0002-3363-0936]; Scholz, A. [0000-0001-8993-5053]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Danielski, C. [0000-0002-3729-2663]; Vandenbussche, B. [0000-0002-1368-3109]; Sousa, S. [0000-0001-9047-2965]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Bakos, G. [0000-0001-7204-6727]; Ade, P. [0000-0002-5127-0401]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Haigh, J. [0000-0001-5504-4754]; Scandariato, G. [0000-0003-2029-0626]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Adibekyan, V. [0000-0002-0601-6199]; Pérez Hoyos, S. [0000-0001-9797-4917]; Poretti, E. [0000-0003-1200-0473]; Maggio, A. [0000-0001-5154-6108]; Kervella, P. [0000-0003-0626-1749]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Filacchione, G. [0000-0001-9567-0055]; Rickman, H. [0000-0002-9603-6619]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Fletcher, L. [0000-0001-5834-9588]; Rataj, M. [0000-0002-2978-9629]; Stixrude, L. [0000-0003-3778-2432]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Hueso, R. [0000-0003-0169-123X]; Yurchenko, S. [0000-0001-9286-9501]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Peralta, J. [0000-0002-6823-1695]; Budaj, J. [0000-0002-9125-7340]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Grassi, D. [0000-0003-1653-3066]; Piccioni, G. [0000-0002-7893-6808]; Barton, E. [0000-0001-5945-9244]; Abreu, M. [0000-0002-0716-9568]; Ribas, I. [0000-0002-6689-0312]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Bouy, H. [0000-0002-7084-487X[; Lognonne, P. [0000-0002-1014-920X]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Tanga, P. [0000-0002-2718-997X]; Delgado, M. E. [0000-0003-4434-2195]; Leto, G. [0000-0002-0040-5011]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Balado, A. [0000-0003-4268-2516]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Barrado Navascues, D. [0000-0002-5971-9242]; Figueira, P. [0000-0001-8504-283X]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; Cabral, A. [0000-0002-9433-871X]; Watson, D. [0000-0002-4465-8264]; Turrini, D. [0000-0002-1923-7740]The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.Publicación Acceso Abierto The XXL Survey XLIV. Sunyaev-Zel’dovich mapping of a low-mass cluster at z ∼ 1: a multi-wavelength approach(EDP Sciences, 2020-10-13) Ricci, C.; Adam, R.; Eckert, Dominique; Ade, P.; André, P.; Andrianasolo, A.; Altieri, B.; Aussel, H.; Beelen, A.; Benoist, C.; Benoit, A.; Berta, S.; Bideaud, A.; Birkinshaw, M.; Bourrion, O.; Boutigny, D.; Bremer, M.; Calvo, M.; Cappi, A.; Chiappetti, L.; Catalano, A.; De Petris, M.; Désert, F. X.; Doyle, S.; Driessen, E. F. C.; Faccioli, L.; Ferrari, C.; Fotopoulou, S.; Gastaldello, F.; Giles, P.; Gómez, A.; Goupy, J.; Hahn, O.; Horellou, C.; Kéruzoré, F.; Koulouridis, E.; Kramer, C.; Ladjelate, B.; Lagache, G.; Leclercq, S.; Lestrade, J. F.; Marcías Pérez, J. F.; Maughan, B.; Maurogordato, S.; Mauskopf, P.; Monfardini, A.; Pacaud, F.; Perotto, L.; Pierre, M.; Pisano, G.; Pompei, E.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Sánchez Portal, M.; Schuster, K.; Sereno, M.; Shu, S.; Slievers, A.; Tucker, C.; Umetsu, K.; Romero Guzman, Catalina; European Research Council (ERC); Agenzia Spaziale Italiana (ASI); European Commission (EC); Umetsu, K. [0000-0002-7196-4822]; Koulouridis, E. [0000-0002-9423-3723]; Altieri, B. [0000-0003-3936-0284]; Giles, P. [0000-0003-4937-8453]; Ricci, M. [0000-0002-3645-9652]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∼ 2 × 1014 M⊙) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid.Publicación Acceso Abierto Unveiling the Merger Dynamics of the Most Massive MaDCoWS Cluster at z = 1.2 from a Multiwavelength Mapping of Its Intracluster Medium Properties(The Institute of Physics (IOP), 2020-04-16) Ruppin, F.; McDonald, M.; Brodwin, M.; Adam, R.; Ade, P.; André, P.; Adrianasolo, A.; Arnaud, M.; Aussel, H.; Bartalucci, I.; Bautz, M. W.; Beelen, A.; Benoit, A.; Bideaud, A.; Bourrion, O.; Calvo, M.; Catalano, A.; Comis, B.; Decker, B.; De Petris, M.; Désert, F. X.; Doyle, S.; Driessen, E. F. C.; Eisenhardt, P. R. M.; Gómez, A.; González, A. H.; Goupy, J.; Kéruzoré, F.; Kramer, C.; Ladjelate, B.; Lagache, G.; Leclercq, S.; Lestrade, L. F.; Marcías Pérez, J. F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Moravec, E.; Perotto, L.; Pisano, G.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Roussel, H.; Schuster, K.; Shu, S.; Sievers, A.; Stanford, S. A.; Stern, D.; Tucker, C.; Zylka, R.; Romero Guzman, Catalina; Agence Nationale de la Recherche (ANR); European Commission (EC); National Aeronautics & Space Administration (NASA); Ministerio de Economía y Competitividad (MINECO); Brodwin, M. [0000-0002-4208-798X]; Ade, P. [0000-0002-5127-0401]; González, A. H. [0000-0002-0933-8601]; Moravec, E. [0000-0001-9793-5416]; Romero, C. [0000-0001-5725-0359]; Stern, D. [0000-0003-2686-9241]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The characterization of the Intracluster Medium (ICM) properties of high-redshift galaxy clusters is fundamental to our understanding of large-scale structure formation processes. We present the results of a multiwavelength analysis of the very massive cluster MOO J1142+1527 at a redshift z = 1.2 discovered as part of the Massive and Distant Clusters of WISE Survey. This analysis is based on high angular resolution Chandra X-ray and NIKA2 Sunyaev–Zel'dovich (SZ) data. The cluster thermodynamic radial profiles have been obtained with unprecedented precision at this redshift and up to 0.7R500, thanks to the combination of high-resolution X-ray and SZ data. The comparison between the galaxy distribution mapped in infrared by Spitzer and the morphological properties of the ICM derived from the combined analysis of the Chandra and NIKA2 data leads us to the conclusion that the cluster is an ongoing merger. We have estimated a systematic uncertainty on the cluster total mass that characterizes both the impact of the observed deviations from spherical symmetry and of the core dynamics on the mass profile. We further combine the X-ray and SZ data at the pixel level to obtain maps of the temperature and entropy distributions. We find a relatively low-entropy core at the position of the X-ray peak and high-temperature regions located on its south and west sides. This work demonstrates that the addition of spatially resolved SZ observations to low signal-to-noise X-ray data brings a high information gain on the characterization of the evolution of ICM thermodynamic properties at z > 1.