Examinando por Autor "Abreu, M."
Mostrando 1 - 7 de 7
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A precise architecture characterization of the π Mensae planetary system(EDP Sciences, 2020-10-01) Damasso, D.; Sozzetti, A; Lovis, C.; Barros, S. C. C.; Sousa, S. G.; Demangeon, O. D. S.; Faria, J. P.; Lillo Box, J.; Cristiani, S.; Pepe, F.; Rebolo, R.; Santos, N. C.; Zapatero Osorio, M. R.; Amate, M.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Borsa, F.; Bossini, D.; Bourrier, V.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Dekker, H.; Delabre, B.; Di Marcoantonio, P.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lo Curto, G.; Maire, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Riva, M.; Santa Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Agenzia Spaziale Italiana (ASI); Fundação para a Ciência e a Tecnologia (FCT); Australian Research Council (ARC); Istituto Nazionale Astrofisica (INAF); 0000-0003-0987-1593; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The bright star pi Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M-circle plus planet at similar to 0.07 au and a sub-stellar companion on a similar to 2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization. Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of pi Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. Results. We present a precise characterization of the planetary system around pi Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s(-1)) allow for a precise retrieval of the Doppler signal induced by pi Men c. The residuals show a root mean square of 1.2 m s(-1), which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than similar to 2 M-circle plus within the orbit of pi Men c). We improve the ephemeris of pi Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of pi Men b with high precision (i(b) =45.8(-1.1)(+1.4) deg). This leads to precise measurement of its absolute mass m(b) = =14.1(-0.4)(+0.5) M-Jup, indicating that pi Men b can be classified as a brown dwarf. Conclusions. The pi Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the pi Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of pi Men b contributes to make the brown dwarf desert a bit greener.Publicación Acceso Abierto Characterization of the K2-38 planetary system Unraveling one of the densest planets known to date(EDP Sciences, 2020-09-14) Toledo Padrón, B.; Lovis, C.; Suárez Mascareño, A.; Barros, S. C. C.; Sozzetti, A.; Bouchy, F.; Zapatero Osorio, M. R.; Rebolo, R.; Cristiani, S.; Pepe, F. A.; Santos, N. C.; Sousa, S. G.; Tabernero, H. M.; Lillo Box, J.; Bossini, D.; Adibekyan, V.; Allart, R.; Damasso, M.; D´Odorico, V.; Figueira, P.; Lavie, B.; Lo Curto, G.; Mehner, A.; Micela, G.; Modigliani, A.; Nunes, N. J.; Pallé, E.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benatti, S.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Deiries, S.; Dekker, H.; Delabre, B.; Demangeon, O. D.; Di Marcoantonio, P.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Knudstrup, J.; Landoni, M.; Lizon, J. L.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Molaro, P.; Monteiro, M. J. P. F. G.; Monteiro, M. A.; Moschetti, M.; Mueller, E.; Oggioni, L.; Oliveira, A.; Rivas, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; Fundacion La Caixa; Swiss National Science Foundation (SNSF); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Ministerio de Ciencia e Innovación (MICINN); 0000-0001-8160-5076; 0000-0003-0987-1593; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V similar to 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with P-b = 4.01593 +/- 0.00050 d and P-c = 10.56103 +/- 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, T-eff = 5731 +/- 66, log g = 4.38 +/- 0.11 dex, and [Fe/H] = 0 :26 +/- 0.05 dex, and thus the mass and radius of K2-38, M-star = 1.03(-0.02)(+0.04) M-circle plus and R-circle plus = 1.06+0:09 0:06 R-circle plus. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with R-P = 1.54 +/- 0.14 R-circle plus and M-p = 7.3(-1.0)(+1:1) M-circle plus, and K2-38c as a sub-Neptune with RP = 2.29 +/- 0.26 R-circle plus and M-p = 8.3(-1.3)(+1:3) M (circle plus). Combining the radius and mass measurements, we derived a mean density of rho(p) = 11.0(-2.8)(+4:1) g cm(-3) for K2-38b and rho(p) = 3.8+1:8 1:1 g cm(-3) for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity.Publicación Acceso Abierto ESPRESSO at VLT On-sky performance and first results(EDP Sciences, 2021-01-19) Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Dekker, H.; Cabral, A.; Di Marcoantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; Mayor, M.; Mégevand, D.; Molaro, P.; Riva, M.; Zapatero Osorio, M. R.; Amate, M.; Manescau, A.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Barros, S. C. C.; Benz, W.; Bianco, A.; Borsa, F.; Bourrier, V.; Bouchy, F.; Broeg, C.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Damasso, M.; Deiries, S.; Delabre, B.; Demangeon, O. D. S.; Dumusque, X.; Ehrenreich, D.; Faria, J. P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, J. L.; Maire, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Murphy, M. T.; Nunes, N.; Oggioni, L.; Oliveira, A.; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Santana Tschudi, S.; Santin, P.; Santos, P.; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Sozzetti, A.; Sousa, S. G.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; González Hernández, Carmen; Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Australian Research Council; 0000-0002-9433-871X; 0000-0003-0513-8116; 0000-0002-4339-0550; 0000-0002-6728-244X; 0000-0003-2434-3625; 0000-0002-7504-365X; 0000-0002-7040-5498; 0000-0003-4422-2919; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. ESPRESSO is the new high-resolution spectrograph of ESO’s Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16 m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims. We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65″ exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s−1 during a single night and 50 cm s−1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s−1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields.Publicación Acceso Abierto Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant(EDP Sciences, 2021-02-19) Schmidt, T. M.; Molaro, P.; Murphy, M. T.; Lovis, C.; Cupani, G.; Cristiani, S.; Pepe, F. A.; Rebolo, R.; Santos, N. C.; Abreu, M.; Adibekyan, V.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Baldini, V.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Coretti, I.; D´Odorico, V.; Di Marcoantonio, P.; Ehrenreich, D.; Figueira, P.; Genoni, M.; Génova Santos, R.; Kerber, F.; Londoni, M.; Leite, A. C. O.; Louis Lizon, J.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M.; Monteiro, M. J. P. F. G.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Redaelli, E.; Riva, M.; Santos, P.; Sosnowska, D.; Sousa, S. G.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Zapatero Osorio, M. R.; Zerbi, Filippo M.; González Hernández, Carmen; Istituto Nazionale di Astrofisica (INAF); Australian Research Council (ARC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Schmidt, T. M. [0000-0002-4833-7273]; Molaro, P. [0000-0002-0571-4163]; Murphy, M. T. [0000-0002-7040-5498]; Cristiani, S. [0000-0002-2115-5234]; Pepe, F. A. [0000-0002-9815-773X]; Rebolo, R. [0000-0003-3767-7085]Observations of metal absorption systems in the spectra of distant quasars allow one to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph ESPRESSO, which was recently installed at the VLT. In preparation of the fundamental physics related part of the ESPRESSO GTO program, we present a thorough assessment of the ESPRESSO wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, which is based on the combination of Thorium-Argon arc lamp spectra and a Fabry-Pérot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24 m s−1. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of ESPRESSO with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the 10−6 level can be obtained with ESPRESSO without being limited by wavelength calibration systematics.Publicación Restringido Nightside condensation of iron in an ultrahot giant exoplanet(Nature Research Journals, 2020-03-11) Ehrenreich, D.; Lovis, C.; Allart, R.; Zapatero Osorio, M. R.; Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N. C.; Borsa, F.; Demangeon, O. D. S.; Dumusque, X.; Casasayas Barris, N.; Séngrasan, D.; Sousa, S.; Abreu, M.; Adibekyan, V.; Affolter, M.; Allende Prieto, C.; Alibert, Y.; Aliverti, M.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Bolmont, É.; Bouchy, F.; Bourrier, V.; Broeg, C.; Cabral, A.; Calderone, G.; Pallé, E.; Cegla, H. M.; Cirami, R.; Coelho, João M. P.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Dekker, H.; Delabre, B.; Deiries, S.; D´Odorico, V.; Di Marcoantonio, P.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Harada, N.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, J. L.; Lendl, M.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M.; Monteiro, M. A.; Moschetti, M.; Muller, N.; Nunes, N.; Oggioni, L.; Oliveira, A.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia Milla, A.; Seidel, J. V.; Sosnowska, D.; Sozzetti, A.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; European Research Council (ERC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Suárez Mascareño, A. [0000-0002-3814-5323]; Abreu, M. [0000-0002-0716-9568]; João M. P. Coelho. [0000-0002-4339-0550]; Monteiro, M. J. [0000-0003-0513-8116]; Tabernero, H. [0000-0002-8087-4298]; Nunes, N. J. [0000-0002-3837-6914]; Cabral, A. [0000-0002-9433-871X]; Molaro, P. [0000-0002-0571-4163]; Redaelli, E. M. A. [0000-0001-8185-2122]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Castro Alves, D. [0000-0001-7026-2514]; Seidel, J. V. [0000-0002-7990-9596]; Martins, C. J. A. P. [0000-0002-4886-9261]; Adibekyan, V. [0000-0002-0601-6199]; Zerbi, F. M. [0000-0002-9996-973X]; Monteiro, M. [0000-0001-5644-0898]; Mehner, A. [0000-0002-9564-3302]; Santos, N. [0000-0003-4422-2919]; Cegla, H. [0000-0001-8934-7315]; Sozzetti, A. [0000-0002-7504-365X]; Allart, R. [0000-0002-1199-9759]; Landoni, M. [0000-0001-5570-5081]; Coretti, I. [0000-0001-9374-3249]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Ultrahot giant exoplanets receive thousands of times Earth’s insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3,4,5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10,11,12,13,14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (‘evening’) and night-to-day (‘morning’) terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by −11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.Publicación Acceso Abierto Revisiting Proxima with ESPRESSO(EDP Sciences, 2020-07-13) Suárez Mascareño, A.; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Zapatero Osorio, M. R.; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas Alcaino, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Delabre, B.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, J.; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; González Hernández, Carmen; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Lillo Box, J. [0000-0003-3742-1987]; Faria, J. [0000-0002-6728-244X]; Nunes, N. J. [0000-0002-3837-6914]; Molaro, P. [0000-0002-0571-4163]; Mascareño, A. S. [0000-0002-3814-5323]; Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. P. F. G. [0000-0003-0513-8116]; Redaelli, E. M. A. [0000-0001-8185-2122]; Barros, S. [0000-0003-2434-3625]; Santos, N. [0000-0003-4422-2919]; Abreu, M. [0000-0002-0716-9568]; Coretti, I. [0000-0001-9374-3249]; Sozzetti, A. [0000-0002-7504-365X]; Adibekyan, V. [0000-0002-0601-6199]; Monteiro, M. [0000-0001-5644-0898]; Damasso, M. [0000-0001-9984-4278]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. Aims. We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. Methods. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm s−1. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. Results. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+ HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ± 0.029 days, with a minimum mass of 1.29 ± 0.13 M⊕. In the combined dataset we measure a period of 11.18427 ± 0.00070 days with a minimum mass of 1.173 ± 0.086 M⊕. We get a clear measurement of the stellar rotation period (87 ± 12 d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of only 40 cm s−1. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ± 0.08 M⊕. We find that forthe case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6 M⊕ at periods shorter than 50 days.Publicación Acceso Abierto The EChO science case(Springer Link, 2015-11-29) Tinetti, G.; Drossart, P.; Eccleston, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Olliver, M.; Puig, L.; Ribas, I.; Schrader, J. R.; Scholz, A.; Watkins, C.; Maillard, J. P.; Abreu, M.; Glasse, A.; Testi, L.; Doel, P.; Magnes, W.; Licandro Goldaracena, J.; Wawer, P.; Zapatero Osorio, M. R.; Decin, L.; Sánz Forcada, J.; Vakili, F.; Aylward, A.; Swain, M.; Sozzetti, A.; Filacchione, G.; Delgado Mena, E.; Read, P.; Lognonné, P.; Irshad, R.; Coates, A.; Cecchi Pestellini, C.; Thrastarson, H.; Brown, L.; Guillot, T.; Strazzulla, G.; Barstow, J. K.; Budaj, J.; Morgante, G.; Pietrzak, R.; Leconte, J.; Hersant, F.; De Sio, A.; Grassi, D.; Selsis, F.; Jarchow, C.; Fouqué, P.; Del Vecchio, C.; Tennyson, J.; Cassan, A.; Fernández Hernández, Maite; Burleigh, M. R.; Cordier, D.; De Witt, J.; Pagano, I.; Ray, T.; Gambicorti, L.; Palla, F.; Maldonado, J.; Biondi, D.; Eiroa, C.; Winek, W.; Ade, P.; Villaver, E.; Temple, J.; Gear, W.; Thompson, S.; Dominic, C.; Galand, M.; Focardi, M.; Cockell, C.; Pace, E.; Dorfi, E.; Bryson, I.; Cavarroc, C.; Pilat Lohinger, E.; Smith, A.; Eymet, V.; MacTavish, C.; Morales, J. C.; Gómez, H.; Stamper, R.; Esposito, M.; Andersen, A.; Azzollini, R.; Maxted, P.; Allende Prieto, C.; Nelson, R.; Gillon, M.; Achilleos, N.; Buchhave, L. A.; Fabrizio, N.; Ciaravella, A.; Claudi, R.; Damasso, M.; Bordé, P.; Figueira, P.; Rickman, H.; Rees, J. M.; Sitek, P.; Fossey, S.; Bakos, G.; Pascale, E.; Laken, B.; Soret, L.; Femenía Castella, B.; Allard, F.; Amado, P. J.; Luzzi, D.; Colomé, J.; Galand, M.; Lammer, H.; Bonford, B.; López Valverde, M. A.; Kerins, E.; Yung, Y.; Espinoza Contreras, M.; Irwin, P.; Herrero, E.; Wright, G.; Guàrdia, J.; Banaszkiewicz, M.; Hoogeeven, R.; Alcala, J.; Guio, P.; Koskinen, T.; Barton, E. J.; Piskunov, N.; Maurin, A. S.; Leto, G.; Boisse, I.; Claret, A.; Massi, F.; Kervella, P.; Börne, P.; Heiter, U.; Hargrave, P.; Fletcher, L.; Sánchez Béjar, V. J.; Bézard, B.; Cabral, A.; Michaut, C.; Winter, B.; Sousa, S.; Giuranna, M.; Batista, V.; Frith, J.; Ballerini, P.; López Morales, M.; Monteiro, M.; Tingley, B. W.; Lanza, N.; Maggio, A.; Lundgaard Rasmussen, I.; Altieri, F.; Covino, E.; Coustenis, A.; Heredero, R. L.; Watson, D.; Coudé du Foresto, V.; Liu, S. J.; Sicardy, B.; Deeg, H. J.; Moses, J.; Rodler, F.; Lithgow Bertelloni, C.; Demangeon, O.; Adybekian, V.; Fletcher, L.; Swinyard, B.; Morales Calderón, M.; Fouqué, P.; Deroo, P.; Lo Cicero, Ugo; Hueso, R.; Iro, N.; González Merino, B.; López Puertas, M.; Capria, M. T.; Danielski, C.; Branduardi Raymont, G.; Luntzer, A.; Gaulme, P.; Bulgarelli, A.; Parmentier, V.; Gerard, J. C.; Alard, C.; Frith, J.; Dobrijévic, M.; Medvedev, A.; Barrado, D.; Jacquemoud, S.; Sethenadh, J.; Readorn, K.; Polichtchouk, I.; Petrov, R.; García Piquer, A.; Tabernero, H. M.; White, G.; Pancrazzi, M.; García López, Ramón; Filacchione, G.; Gómez Leal, I.; Rengel, M.; Gesa, L.; Tanga, P.; Mueller Wodarg, I.; Israelian, G.; Rebolo López, R.; Shore, S.; Peralta, J.; Collura, A.; Giro, E.; Del Val Borro, M.; Griffith, C.; Tecsa, M.; Haigh, J.; Moro Martín, A.; Jones, H.; Gizon, L.; Pezzuto, S.; Giani, E.; Mall, U.; Eales, S.; Graczyk, R.; Ramos Zapata, G.; Krupp, N.; Sánchez Lavega, A.; Fossey, S.; Alonso Floriano, F. J.; Justtanot, K.; Santos, N.; Pérez Hoyos, S.; Savini, G.; Chamberlain, S.; Bowles, N.; Kerschbaum, F.; Tozzi, A.; Turrini, D.; Kipping, D.; Maruquette, J. B.; Correira, A.; Trifoglio, M.; Agúndez, Marcelino; Scandaratio, G.; Snellen, I. A.; Scuderi, S.; Femenía Castella, B.; Prisinzano, L.; Oliva, E.; Hébrard, E.; Lodieu, N.; Forget, F.; Chadney, J.; Showman, A.; Gustin, J.; Vinatier, S.; Charnoz, S.; Affer, L.; Rank Lüftinger, T.; Poretti, E.; Lahav, O.; North, C.; Gerard, J. C.; Murgas Alcaino, F.; Yurchenko, S. N.; Widemann, T.; Ward Thompson, D.; Montañés Rodríguez, P.; Kovács, G.; Valdivieso, M. L.; Moya Bedon, A.; Montalto, M.; Christian Jessen, N.; Venot, O.; Koskinen, T.; Lagage, P. O.; Bellucci, G.; Prinja, R.; Pinfield, D.; Banaszkiewicz, M.; Waldmann, I.; Jones, G.; Morello, G.; Crook, J.; Lim, T.; Parviainen, H.; Pallé, E.; Ramos, A. A.; Sanromá, E.; Waters, R.; Morais, H.; Stiepen, A.; Lellouch, E.; Orton, G.; Rezac, L.; Beaulieu, J. P.; Focardi, M.; Mauskopf, P.; Barlow, M.; Guedel, M.; Waltham, D.; Agnor, C.; Encrenaz, T.; Cerulli, R.; Balado, A.; Bouy, H.; Rebordao, J.; Stolarski, M.; Álvarez Iglesias, C. A.; Adriani, A.; Rocchetto, M.; Norgaard Nielsen, H. U.; Hollis, M.; Selig, A.; Malaguti, G.; Burston, R.; Peña Ramírez, K. Y.; Schmider, F. X.; Baffa, C.; Heyrovsky, D.; Figueira, P.; Piccioni, G.; Ottensamer, R.; Radioti, A.; Yelle, R.; Pantin, E.; Miles Paez, P.; Belmonte Avilés, J. A.; Montes, D.; Varley, R.; Viti, S.; Abe, L.; Pinsard, F.; Tessenyi, M.; Di Giorgio, A.; Turrini, D.; Terenzi, L.; Hubert, B.; Griffin, M.; Barber, R. J.; Cole, R.; Gianotti, F.; Blecka, M.; Wawrzaszk, A.; Middleton, K.; De Kok, R.; Martín Torres, Javier; Kehoe, T.; Cho, J.; Machado, P.; Berry, D.; Wisniowski, T.; Grodent, D.; Rataj, M.; Hornstrup, A.; Kerschbaum, F.; Vandenbussche, B.; Stixrude, L.; González Hernández, Carmen; Rebordao, J. [0000-0002-7418-0345]; Kerschbaum, F. [0000-0001-6320-0980]; Abreu, M. [0000-0002-0716-9568]; Tabernero, H. [0000-0002-8087-4298]; López Puertas, M. [0000-0003-2941-7734]; Jacquemoud, S. [0000-0002-1500-5256]; Tennyson, J. [0000-0002-4994-5238]; Focardi, M. [0000-0002-3806-4283]; Leto, G. [0000-0002-0040-5011]; Lodieu, N. [0000-0002-3612-8968]; Tinetti, G. [0000-0001-6058-6654]; Bulgarelli, A. [0000-0001-6347-0649]; Morales Calderon, M. [0000-0001-9526-9499]; Ward Thompson, D. [0000-0003-1140-2761]; Rebolo, R. [0000-0003-3767-7085]; López Valverde, M. A. [0000-0002-7989-4267]; Gillon, M. [0000-0003-1462-7739]; Morgante, G. [0000-0001-9234-7412]; Pena Ramírez, K. [0000-0002-5855-401X]; Galand, M. [0000-0001-5797-914X]; Pancrazzi, M. [0000-0002-3789-2482]; Pilat Lohinger, E. [0000-0002-5292-1923]; Altieri, F. [0000-0002-6338-8300]; Malaguti, G. [0000-0001-9872-3378]; Sánchez Lavega, A. [0000-0001-7234-7634]; Waldmann, I. [0000-0002-4205-5267]; Kovacs, G. [0000-0002-2365-2330]; Guillot, T. [0000-0002-7188-8428]; Monteiro, M. [0000-0001-5644-0898]; Bellucci, G. [0000-0003-0867-8679]; Baffa, C. [0000-0002-4935-100X]; Olivia, E. [0000-0002-9123-0412]; Tizzi, A. [0000-0002-6725-3825]; Selsis, F. [0000-0001-9619-5356]; Scuderi, Salvatore [0000-0002-8637-2109]; Hersant, F. [0000-0002-2687-7500]; Gear, W. [0000-0001-6789-6196]; Damasso, M. [0000-0001-9984-4278]; Irwin, P. [0000-0002-6772-384X]; Pinfield, D. [0000-0002-7804-4260]; Kipping, D. [0000-0002-4365-7366]; Maldonado, J. [0000-0002-4282-1072]; Pace, E. [0000-0001-5870-1772]; Burleigh, M. [0000-0003-0684-7803]; Chadney, J. [0000-0002-5174-2114]; Moro Martín, A. [0000-0001-9504-8426]; Claret, A. [0000-0002-4045-8134]; Rodríguez, P. [0000-0002-6855-9682]; Bezard, B. [0000-0002-5433-5661]; Gómez, H. [0000-0003-3398-0052]; Maldonado, J. [0000-0002-2218-5689]; Michaut, C. [0000-0002-2578-0117]; Hornstrup, A. [0000-0002-3363-0936]; Scholz, A. [0000-0001-8993-5053]; Sánchez Bejar, V. [0000-0002-5086-4232]; López Heredero, R. [0000-0002-2197-8388]; Sanz Forcada, J. [0000-0002-1600-7835]; Danielski, C. [0000-0002-3729-2663]; Vandenbussche, B. [0000-0002-1368-3109]; Sousa, S. [0000-0001-9047-2965]; Medved, A. [0000-0003-2713-8977]; Tinetti, G. [0000-0001-6058-6654]; Bakos, G. [0000-0001-7204-6727]; Ade, P. [0000-0002-5127-0401]; Amado, P. J. [0000-0002-8388-6040]; Martín Torres, J. [0000-0001-6479-2236]; Correira, A. [0000-0002-8946-8579]; Haigh, J. [0000-0001-5504-4754]; Scandariato, G. [0000-0003-2029-0626]; Guedel, M. [0000-0001-9818-0588]; Piskunov, N. [0000-0001-5742-7767]; Adibekyan, V. [0000-0002-0601-6199]; Pérez Hoyos, S. [0000-0001-9797-4917]; Poretti, E. [0000-0003-1200-0473]; Maggio, A. [0000-0001-5154-6108]; Kervella, P. [0000-0003-0626-1749]; Pascale, E. [0000-0002-3242-8154]; Claudi, R. [0000-0001-7707-5105]; Filacchione, G. [0000-0001-9567-0055]; Rickman, H. [0000-0002-9603-6619]; Sanroma, E. [0000-0001-8859-7937]; Agundez, M. [0000-0003-3248-3564]; Montes, D. [0000-0002-7779-238X]; Fletcher, L. [0000-0001-5834-9588]; Rataj, M. [0000-0002-2978-9629]; Stixrude, L. [0000-0003-3778-2432]; Montes, D. [0000-0002-7779-238X]; Morais, M. H. [0000-0001-5333-2736]; Hueso, R. [0000-0003-0169-123X]; Yurchenko, S. [0000-0001-9286-9501]; Morales, J. C. [0000-0003-0061-518X]; Pérez Hoyos, S. [0000-0002-2587-4682]; Santos, N. [0000-0003-4422-2919]; Peralta, J. [0000-0002-6823-1695]; Budaj, J. [0000-0002-9125-7340]; Barlow, M. [0000-0002-3875-1171]; Deeg, H. [0000-0003-0047-4241]; Grassi, D. [0000-0003-1653-3066]; Piccioni, G. [0000-0002-7893-6808]; Barton, E. [0000-0001-5945-9244]; Abreu, M. [0000-0002-0716-9568]; Ribas, I. [0000-0002-6689-0312]; Coates, A. [0000-0002-6185-3125]; García Ramón, J. [0000-0002-8204-6832]; Bouy, H. [0000-0002-7084-487X[; Lognonne, P. [0000-0002-1014-920X]; Demangeon, O. [0000-0001-7918-0355]; Ray, T. [0000-0002-2110-1068]; Guio, P. [0000-0002-1607-5862]; Tanga, P. [0000-0002-2718-997X]; Delgado, M. E. [0000-0003-4434-2195]; Leto, G. [0000-0002-0040-5011]; Prisinzano, L. [0000-0002-8893-2210]; Barstow, J. [0000-0003-3726-5419]; Balado, A. [0000-0003-4268-2516]; Lithgow Bertelloni, C. [0000-0003-0924-6587]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Affer, L. [0000-0001-5600-3778]; Ciaravella, A. [0000-0002-3127-8078]; Barrado Navascues, D. [0000-0002-5971-9242]; Figueira, P. [0000-0001-8504-283X]; Covino, E. [0000-0002-6187-6685]; Venot, O. [0000-0003-2854-765X]; Cabral, A. [0000-0002-9433-871X]; Watson, D. [0000-0002-4465-8264]; Turrini, D. [0000-0002-1923-7740]The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10−4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 μm with a goal of covering from 0.4 to 16 μm. Only modest spectral resolving power is needed, with R ~ 300 for wavelengths less than 5 μm and R ~ 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m2 is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m2 telescope, diffraction limited at 3 μm has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300–3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright “benchmark” cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO’s launch and enable the atmospheric characterisation of hundreds of planets.