Examinando por Autor "Newman, C. E."
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Half-a-Year of InSight Atmospheric Measurements and Large-Eddy Simulations(American Geophysical Union: Advancing Earth and Space Science, 2021-01-12) Spiga, A.; Murdoch, N.; Lorenz, R.; Forget, F.; Newman, C. E.; Rodríguez, Sébastien; Pla García, J.; Viúdez Moreiras, Daniel; Banfield, D.; Perrin, C.; Mueller, N. T.; Lemmon, M. T.; Millour, E.; Banerdt, W. B.; Agencia Estatal de Investigación (AEI); Spiga, A. [0000-0002-6776-6268]; Murdoch, N. [0000-0002-9701-4075]; Lorenz, R. [0000-0001-8528-4644]; Forget, F. [0000-0002-3262-4366]; Newman, C. [0000-0001-9990-8817]; Rodríguez, S. [0000-0003-1219-0641]; Pla García, J. [0000-0002-8047-3937]; Viúdez Moreiras, D. [0000-0001-8442-3788]; Perrin, C. [0000-0002-7200-5682]; Mueller, N. T. [0000-0001-9229-8921]; Lemmon, M. [0000-0002-4504-5136]; Millour, E. [0000-0003-4808-9203]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Studying the atmospheric planetary boundary layer (PBL) is crucial to understand the climate of a planet. The meteorological measurements by the instruments onboard InSight at a latitude of 4.5°N make a unique rich data set to study the active turbulent dynamics of the daytime PBL on Mars. Here we use the high-sensitivity continuous pressure, wind, and temperature measurements in the first 400 sols of InSight operations (from northern late winter to midsummer) to analyze wind gusts, convective cells, and vortices in Mars’ daytime PBL. We compare InSight measurements to turbulence-resolving large-eddy simulations (LES). The daytime PBL turbulence at the InSight landing site is very active, with clearly identified signatures of convective cells and a vast population of 6,000 recorded vortex encounters, adequately represented by a power law with a 3.4 exponent. While the daily variability of vortex encounters at InSight can be explained by the statistical nature of turbulence, the seasonal variability is positively correlated with ambient wind speed, which is supported by LES. However, wind gustiness is positively correlated to surface temperature rather than ambient wind speed and sensible heat flux, confirming the radiative control of the daytime Martian PBL; and fewer convective vortices are forming in LES when the background wind is doubled. Thus, the long-term seasonal variability of vortex encounters at the InSight landing site is mainly controlled by the advection of convective vortices by ambient wind speed. Typical tracks followed by vortices forming in the LES show a similar distribution in direction and length as orbital imagery.Publicación Acceso Abierto Advective Fluxes in the Martian Regolith as a Mechanism Driving Methane and Other Trace Gas Emissions to the Atmosphere(American Geophysical Union: Advancing Earth and Space Science, 2020-01-15) Viúdez Moreiras, Daniel; Arvidson, R. E.; Gómez Elvira, J.; Webster, C.; Newman, C. E.; Mahaffy, Paul R.; Vasavada, A. R.; 0000-0002-9068-9846; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Advective fluxes influence methane and CO2 soil emissions into the atmosphere on Earth and may drive trace gas emissions in the Mars atmosphere. However, their relevance in the Martian regolith has not been evaluated to date. Our regolith transport simulations show that advective fluxes can be relevant under Martian conditions and may drive the methane abundance detected by Mars Science Laboratory. Trace gas emissions would be highest in regions where winds interact with topography. Emissions in these regions may be further enhanced by time‐varying pressure fields produced by diurnal thermal tides and atmospheric turbulence. Trace gases such as methane should be emitted or produced from the first layers of regolith, or quickly transported to this region from a deeper reservoir through fractured media.Publicación Acceso Abierto Effects of a Large Dust Storm in the Near‐Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory(American Geophysical Union: Advancing Earth and Space Science, 2020-08-11) Viúdez Moreiras, Daniel; Newman, C. E.; Forget, F.; Lemmon, M. T.; Banfield, D.; Spiga, A.; Lepinette, A.; Rodríguez Manfredi, J. A.; Gómez Elvira, J.; Pla García, J.; Muller, N.; Grott, M.; TWINS/InSight team; Agencia Estatal de Investigación (AEI); Centre National D'Etudes Spatiales (CNES); Spiga, A. [0000-0002-6776-6268]; Lemmon, M. [0000-0002-4504-5136]; Newman, C. [0000-0001-9990-8817]; Pla garcía, J. [0000-0002-8047-3937]; Mueller, N. [0000-0001-9229-8921]NASA's InSight landed in Elysium Planitia (~4.5°N,136°E) at Ls ~ 296° (November 2018), right after the decay of the 2018 Global Dust Storm (GDS) and before the onset of the 2019 Large Dust Storm (LDS) at Ls ~ 320° (January 2019). InSight's cameras observed a rise in the atmospheric opacities during the storm from ~0.7 to ~1.9, similarly to contemporaneous measurements by Curiosity in Gale crater. Pressure tides were strongly affected at the locations of InSight and Curiosity. In particular, the diurnal pressure mode experienced an abrupt increase during the onset of the LDS, similar to that measured by Curiosity, most likely due to longitudinally asymmetric dust loading. Later, the dust was redistributed around the planet and the semidiurnal mode evolved according to dust opacity in both missions. Before and after the onset of the storm, the observed wind patterns resulted from the interaction between regional and local slope flows induced by topography, which all produced a diurnal perturbation superimposed on a mean flow, dominated by the Hadley cell but with modifications due to channeling effects from the regional topography. However, the onset of the LDS modified this to a scenario consistent with enhanced tidal flows. The local air temperatures are strongly perturbed by the lander's thermal effects, and their retrieval significantly depends on wind patterns, which changed during the course of the dust storm. Observations suggest a decrease in convective vortices during the dust storm; however, vortex activity remained strong during the storm's onset due to the increase in wind speeds.Publicación Restringido Initial results from the InSight mission on Mars(Nature Research Journals, 2020-02-24) Banerdt, W. B.; Smrekar, S.; Banfield, D.; Giardini, D.; Golombek, M.; Johnson, C. L.; Lognonné, P.; Spiga, A.; Spohn, T.; Perrin, C.; Stähler, S.; Antonangeli, D.; Asmar, S.; Beghein, C.; Bowles, N.; Bozdag, E.; Chi, P.; Christensesn, U.; Clinton, J.; Collins, G. S.; Daubar, I.; Dehant, V.; Drilleau, M.; Fillingim, M.; Folkner, W.; García, R. F.; Garvin, J. B.; Grant, J.; Grott, M.; Grygorczuk, J.; Hudson, T.; Irving, J. C. E.; Kargl, G.; Kawamura, T.; Kedar, S.; King, S.; Knapmeyer Endrun, B.; Knapmeyer, M.; Lemmon, M. T.; Lorenz, R.; Maki, Justin N.; Margerin, L.; McLennan, S. M.; Michaut, C.; Mimoun, D.; Mittelholz, A.; Mocquet, A.; Morgan, P.; Mueller, N. T.; Murdoch, N.; Nagihara, S.; Newman, C. E.; Nimmo, F.; Panning, M.; Thomas Pike, W.; Plesa, A. C.; Rodríguez, Sébastien; Rodríguez Manfredi, J. A.; Russell, C. T.; Chmerr, N.; Siegler, M.; Stanley, S.; Stutzmann, E.; Teanby, N.; Tromp, J.; Van Driel, M.; Warner, N.; Weber, R.; Wieczorek, Mark A.; Agence Nationale de la Recherche (ANR); Swiss National Science Foundation (SNSF); Tromp, J. [0000-0002-2742-8299]; Rodríguez, S. [0000-0003-1219-0641]; Lognonné, P. [0000-0002-1014-920X]; Perrin, C. [0000-0002-7200-5682]; Murdoch, N. [0000-0002-9701-4075]; Knapmeyer, M. [0000-0003-0319-2514]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Spiga, A. [0000-0002-6776-6268]; Panning, M. P. [0000-0002-2041-3190]; García, R. [0000-0003-1460-6663]; Johnson, C. [0000-0001-6084-0149]; Stutzmann, E. [0000-0002-4348-7475]; Knapmeyer-Endrun, B. [0000-0003-3309-6785]; Schmerr, N. [0000-0002-3256-1262]; Irving, J. C. E. [0000-0002-0866-8246]; Morgan, P. [0000-0001-8714-4178]; Mueller, N. [0000-0001-9229-8921]; Pike, W. [0000-0002-7660-6231]; Kawamura, T. [0000-0001-5246-5561]; Clinton, J. [0000-0001-8626-2703]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander.Publicación Acceso Abierto Lander and rover histories of dust accumulation on and removal from solar arrays on Mars(Elsevier, 2021-11-01) Lorenz, R. D.; Martínez, G. M.; Spiga, A.; Vicente Retortillo, Á.; Newman, C. E.; Murdoch, N.; Forget, F.; Millour, E.; Pierron, T.; National Aeronautics and Space Administration (NASA); Agence Nationale de la Recherche (ANR); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The degradation in electrical output of solar arrays on Mars landers and rovers is reviewed. A loss of 0.2% per Sol is typical, although observed rates of decrease in ‘dust factor’ vary between 0.05% and 2% per Sol. 0.2%/Sol has been observed throughout the first 800 Sols of the ongoing InSight mission, as well as the shorter Mars Pathfinder and Phoenix missions. This rate was also evident for much of the Spirit and Opportunity missions, but the degradation there was episodically reversed by cleaning events due to dust devils and gusts. The enduring success of those rover missions may have given an impression of the long-term viability of solar power on the Martian surface that is not globally-applicable: the occurrence of cleaning events with an operationally-useful frequency seems contingent upon local meteorological circumstances. The conditions for significant cleaning events have apparently not been realized at the InSight landing site, where, notably, dust devils have not been detected in imaging. Optical obscuration by dust deposition and removal has also been observed by ultraviolet sensors on Curiosity, with a similar (but slightly higher) degradation rate. The observations are compared with global circulation model (GCM) results: these predict a geographically somewhat uniform dust deposition rate, while there is some indication that the locations where cleaning events were more frequent may be associated with weaker background winds and a deeper planetary boundary layer. The conventional Dust Devil Activity metric in GCMs does not effectively predict the different dust histories.Publicación Acceso Abierto Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater(Springer Link, 2020-12-14) Pla García, J.; Rafkin, S. C. R.; Martinez, G. M.; Vicente Retortillo, Á.; Newman, C. E.; Rodríguez Manfredi, J. A.; Gómez, F.; Molina, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Agencia Estatal de Investigación (AEI); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Mars Regional Atmospheric Modeling System (MRAMS) and a nested simulation of the Mars Weather Research and Forecasting model (MarsWRF) are used to predict the local meteorological conditions at the Mars 2020 Perseverance rover landing site inside Jezero crater (Mars). These predictions are complemented with the COmplutense and MIchigan MArs Radiative Transfer model (COMIMART) and with the local Single Column Model (SCM) to further refine predictions of radiative forcing and the water cycle respectively. The primary objective is to facilitate interpretation of the meteorological measurements to be obtained by the Mars Environmental Dynamics Analyzer (MEDA) aboard the rover, but also to provide predictions of the meteorological phenomena and seasonal changes that might impact operations, from both a risk perspective and from the perspective of being better prepared to make certain measurements. A full diurnal cycle at four different seasons (L-s 0 degrees, 90 degrees, 180 degrees, and 270 degrees) is investigated. Air and ground temperatures, pressure, wind speed and direction, surface radiative fluxes and moisture data are modeled. The good agreement between observations and modeling in prior works [Pla-Garcia et al. in Icarus 280:103-113, 2016; Newman et al. in Icarus 291:203-231, 2017; Vicente-Retortillo et al. in Sci. Rep. 8(1):1-8, 2018; Savijarvi et al. in Icarus, 2020] provides confidence in utilizing these models results to predict the meteorological environment at Mars 2020 Perseverance rover landing site inside Jezero crater. The data returned by MEDA will determine the extent to which this confidence was justified.Publicación Acceso Abierto Multi-model Meteorological and Aeolian Predictions for Mars 2020 and the Jezero Crater Region(Springer Link, 2021-02-08) Newman, C. E.; Torres Juárez, M.; Pla García, J.; Wilson, R. J.; Lewis, S. R.; Neary, L.; Kahre, M. A.; Forget, F.; Spiga, A.; Richardson, M. L. A.; Daerden, F.; Bertrand, T.; Viúdez Moreiras, Daniel; Sullivan, Robert; Sánchez Lavega, A.; Chide, B.; Rodríguez Manfredi, J. A.; National Aeronautics and Space Administration (NASA); European Space Agency (ESA); Centre National D'Etudes Spatiales (CNES); Sánchez Lavega, Á. [0000-0001-7234-7634]; Lewis, S. [0000-0001-7237-6494]Nine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at Ls∼145∘ and 250∘, respectively. Maximum and minimum surface and atmospheric temperature are predicted at Ls∼180∘ and 270∘, respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (∼east-southeasterly) and nighttime downslope (∼northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to 19 ms−1 and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater.Publicación Restringido The atmosphere of Mars as observed by InSight.(Nature Research Journals, 2020-02-24) Banfield, D.; Spiga, A.; Newman, C. E.; Forget, F.; Lemmon, M. T.; Lorenz, R.; Murdoch, N.; Viúdez Moreiras, Daniel; Pla García, J.; García, R. F.; Lognonné, P.; Karatekin, Özgür; Perrin, C.; Martire, L.; Teanby, N.; Van Hove, B.; Maki, Justin N.; Kenda, B.; Mueller, N. T.; Rodriguez, Sébastien; Kawamura, T.; McClean, J. B.; Stott, A. E.; Charalambous, C.; Millour, E.; Johnson, C. L.; Mittelholz, A.; Määttänen, A.; Lewis, S. R.; Clinton, J.; Stähler, S. C.; Ceylan, S.; Giardini, D.; Warren, T.; Pike, W. T.; Daubar, I.; Golombek, M.; Rolland, L.; Widmer Schnidrig, R.; Mimoun, D.; Beucler, E.; Jacob, A.; Lucas, A.; Baker, M.; Ansan, V.; Hurst, K.; Mora Sotomayor, L.; Navarro, Sara; Torres, J.; Lepinette, A.; Molina, A.; Marín Jiménez, M.; Gómez Elvira, J.; Peinado, V.; Rodríguez Manfredi, J. A.; Carchic, B. T.; Sackett, S.; Russell, C. T.; Spohn, T.; Smrekar, S. E.; Banerdt, W. B.; Agence Nationale de la Recherche (ANR); Määttänen, A. [0000-0002-7326-8492]; Martire, L. [0000-0002-9402-6150]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Lognonné, P. [0000-0002-1014-920X]; Rodríguez, S. [0000-0003-1219-0641]; Spiga, A. [0000-0002-6776-6268]; Perrin, C. [0000-0002-7200-5682]; Molina, A. [0000-0002-5038-2022]; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; García, R. [0000-0003-1460-6663]; Murdoch, N. [0000-0002-9701-4075]; Lorenz, R. [0000-0001-8528-4644]; Mittelholz, A. [0000-0002-5603-7334]; Kawamura, T. [0000-0001-5246-5561]; Widmer Schnidrig, R. [0000-0001-9698-2739]; McClean, J. [0000-0002-7863-0120]; Mueller, N. [0000-0001-9229-8921]; Lewis, S. [0000-0001-7237-6494]; Teanby, N. [0000-0003-3108-5775]; Warren, T. [0000-0003-3877-0046]; Milliour, E. [0000-0003-4808-9203]; Lemmon, M. [0000-0002-4504-5136]; Clinton, J. [0000-0001-8626-2703]; Ceylan, S. [0000-0002-6552-6850]; Banfield, D. [0000-0003-2664-0164]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The atmosphere of Mars is thin, although rich in dust aerosols, and covers a dry surface. As such, Mars provides an opportunity to expand our knowledge of atmospheres beyond that attainable from the atmosphere of the Earth. The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander is measuring Mars’s atmosphere with unprecedented continuity, accuracy and sampling frequency. Here we show that InSight unveils new atmospheric phenomena at Mars, especially in the higher-frequency range, and extends our understanding of Mars’s meteorology at all scales. InSight is uniquely sensitive to large-scale and regional weather and obtained detailed in situ coverage of a regional dust storm on Mars. Images have enabled high-altitude wind speeds to be measured and revealed airglow—faint emissions produced by photochemical reactions—in the middle atmosphere. InSight observations show a paradox of aeolian science on Mars: despite having the largest recorded Martian vortex activity and dust-devil tracks close to the lander, no visible dust devils have been seen. Meteorological measurements have produced a catalogue of atmospheric gravity waves, which included bores (soliton-like waves). From these measurements, we have discovered Martian infrasound and unexpected similarities between atmospheric turbulence on Earth and Mars. We suggest that the observations of Mars’s atmosphere by InSight will be key for prediction capabilities and future exploration.