Examinando por Autor "Daddi, E."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A Duality in the Origin of Bulges and Spheroidal Galaxies(IOP Science Publishing, 2021-06-02) Constantin, L.; Pérez González, P. G.; Méndez Abreu, J.; Huertas Company, M.; Dimauro, P.; Alcalde Pampliega, B.; Buitrago, F.; Ceverino, D.; Daddi, E.; Domínguez Sánchez, H.; Espino Briones, N.; Hernán Caballero, A.; Koekemoer, A. M.; Rodighiero, G.; Constantin, L. [0000-0001-6820-0015]; Pérez González, P. G. [0000-0003-4528-5639]; Méndez Abreu, J. [0000-0002-8766-2597]; Huertas Company, M. [0000-0002-1416-8483]; Dimauro, P. [0000-0001-7399-2854]; Alcalde Pampliega, B. [0000-0002-4140-0428]; Buitrago, F. [0000-0002-2861-9812]; Caverino, D. [0000-0002-8680-248X]; Daddi, E. [0000-0002-3331-9590]; Domínguez Sánchez, H. [0000-0002-9013-1316]; Espino Briones, N. [0000-0001-6426-3844]; Hernán Caballero, A. [0000-0002-4237-5500]; Koekemoer, A. M. [0000-0002-6610-2048]; Rodighiero, G. [0000-0002-9415-2296]Studying the resolved stellar populations of the different structural components that build massive galaxies directly unveils their assembly history. We aim at characterizing the stellar population properties of a representative sample of bulges and pure spheroids in massive galaxies (M⋆ > 1010 M⊙) in the GOODS-N field. We take advantage of the spectral and spatial information provided by SHARDS and Hubble Space Telescope data to perform the multi-image spectrophotometric decoupling of the galaxy light. We derive the spectral energy distribution separately for bulges and disks in the redshift range 0.14 < z ≤ 1 with spectral resolution R ∼ 50. Analyzing these spectral energy distributions, we find evidence of a bimodal distribution of bulge formation redshifts. We find that 33% of them present old mass-weighted ages, implying a median formation redshift ${z}_{\mathrm{form}}={6.2}_{-1.7}^{+1.5}$. They are relics of the early universe embedded in disk galaxies. A second wave, dominant in number, accounts for bulges formed at median redshift ${z}_{\mathrm{form}}={1.3}_{-0.6}^{+0.6}$. The oldest (first-wave) bulges are more compact than the youngest. Virtually all pure spheroids (i.e., those without any disk) are coetaneous with the second-wave bulges, presenting a median redshift of formation ${z}_{\mathrm{form}}={1.1}_{-0.3}^{+0.3}$. The two waves of bulge formation are distinguishable not only in terms of stellar ages but also in star formation mode. All first-wave bulges formed fast at z ∼ 6, with typical timescales around 200 Myr. A significant fraction of the second-wave bulges assembled more slowly, with star formation timescales as long as 1 Gyr. The results of this work suggest that the centers of massive disk-like galaxies actually harbor the oldest spheroids formed in the universe.Publicación Restringido A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4(Nature Research Journals, 2021-01-11) Puglisi, A.; Daddi, E.; Brusa, M.; Bournaud, F.; Fensch, J.; Liu, D.; Delvecchio, I.; Calabrò, A.; Circosta, C.; Valentino, F.; Perna, M.; Jin, S.; Enia, A.; Mancini, C.; Rodighiero, G.; Science and Technology Facilities Council (STFC); European Regional Development Fund (ERDF); European Commission (EC); Comunidad de Madrid; Delvecchio, I. [0000-0001-8706-2252]; Enia, A. [0000-0002-0200-2857]; Daddi, E. [0000-0002-3331-9590]; Valentino, F. [0000-0001-6477-4011]; Mancini, C. [0000-0002-4297-0561]; Liu, D. [0000-0001-9773-7479]Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z = 1.4, which is ejecting 46 ± 13% of its molecular gas mass at a startling rate of ≳10,000 M⊙ yr−1. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.Publicación Restringido The structural properties of classical bulges and discs from z ∼ 2(Oxford Academics: Oxford University Press, 2019-09-02) Dimauro, P.; Huertas Company, M.; Daddi, E.; Pérez González, P. G.; Bernardi, M.; Caro, F.; Cattaneo, A.; Häubler, B.; Kuchner, U.; Shankar, F.; Barro, G.; Buitrago, F.; Faber, S. M.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; Mei, S.; Peletier, R.; Primack, J.; Rodríguez Puebla, A.; Salvato, M.; Tuccillo, D.; Ministerio de Economía y Competitividad (MINECO); Salvato, M. [https://orcid.org/0000-0001-7116-9303]; Buitrago, F. [https://orcid.org/0000-0002-2861-9812]; Daddi, E. [https://orcid.org/0000-0002-3331-9590]; Peletier, R. [https://orcid.org/0000-0001-7621-947X]; Huertas Company, M. [https://orcid.org/0000-0002-1416-8483]We study the rest-frame optical mass–size relation of bulges and discs from z ∼ 2 to z ∼ 0 for a complete sample of massive galaxies in the CANDELS fields using two-component Sérsic models. Discs and star-forming galaxies follow similar mass–size relations. The mass–size relation of bulges is less steep than the one of quiescent galaxies (best-fitting slope of 0.7 for quiescent galaxies against 0.4 for bulges). We find little dependence of the structural properties of massive bulges and discs with the global morphology of galaxies (disc versus bulge dominated) and the star formation activity (star-forming versus quiescent). This result suggests similar bulge formation mechanisms for most massive galaxies and also that the formation of the bulge component does not significantly affect the disc structure. Our results pose a challenge to current cosmological models that predict distinct structural properties for stellar bulges arising from mergers and disc instabilities.