Examinando por Autor "Hatziminaoglou, Evanthia"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet(EDP Sciences, 2020-01-21) Fernández Ontiveros, J. A.; Dasyra, K. M.; Hatziminaoglou, Evanthia; Malkan, M. A.; Pereira Santaella, M.; Papachristou, M.; Spinoglio, L.; Combes, F.; Aalto, S.; Nagar, N.; Imanishi, M.; Andreani, P.; Ricci, C.; Slater, R.; Agenzia Spaziale Italiana (ASI); Comunidad de Madrid; Hellenic Foundation for Research and Innovation (HFRI); Comisión Nacional de Investigación Científica y Tecnológica (CONICYT); http://dx.doi.org/10.13039/501100002848; Fernández Ontiveros, J. A. [0000-0001-9490-899X]; Hatziminaoglou, E. [0000-0003-0917-9636]; Spignoglio, L. [0000-0001-8840-1551]; Combes, F. [0000-0003-2658-7893]; Nagar, N. [0000-0001-6920-662X]; Imanishi, M. [0000-0001-6186-8792]; Andreani, P. [0000-0001-9493-0169]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737A prominent jet-driven outflow of CO(2-1) molecular gas is found along the kinematic minor axis of the Seyfert 2 galaxy ESO 420-G13, at a distance of 340-600 pc from the nucleus. The wind morphology resembles the characteristic funnel shape, formed by a highly collimated filamentary emission at the base, and likely traces the jet propagation through a tenuous medium, until a bifurcation point at 440 pc. Here the jet hits a dense molecular core and shatters, dispersing the molecular gas into several clumps and filaments within the expansion cone. We also trace the jet in ionised gas within the inner less than or similar to 340 pc using the [NeII](12.8 mu m) line emission, where the molecular gas follows a circular rotation pattern. The wind outflow carries a mass of similar to 8 x 10(6) M-circle dot at an average wind projected speed of similar to 160 km s(-1), which implies a mass outflow rate of similar to 14 M-circle dot yr(-1). Based on the structure of the outflow and the budget of energy and momentum, we discard radiation pressure from the active nucleus, star formation, and supernovae as possible launching mechanisms. ESO 420-G13 is the second case after NGC 1377 where a previously unknown jet is revealed through its interaction with the interstellar medium, suggesting that unknown jets in feeble radio nuclei might be more common than expected. Two possible jet-cloud configurations are discussed to explain an outflow at this distance from the AGN. The outflowing gas will likely not escape, thus a delay in the star formation rather than quenching is expected from this interaction, while the feedback effect would be confined within the central few hundred parsecs of the galaxy.Publicación Restringido Mid-IR cosmological spectrophotometric surveys from space: Measuring AGN and star formation at the cosmic noon with a SPICA-like mission(Cambridge University Press, 2021-04-23) Spignoglio, L.; Mordini, S.; Fernández Ontiveros, J. A.; Alonso Herrero, A.; Armus, L.; Bisigello, L.; Calura, F.; Carrera, F. J.; Cooray, A.; Dannerbauer, H.; Decarli, R.; Egami, E.; Elbaz, D.; Franceschini, A.; González Alfonso, E.; Graziani, L.; Gruppioni, C.; Hatziminaoglou, Evanthia; Kaneda, H.; Kohno, K.; Labiano, Á.; Magdis, Georgios E.; Malkan, M. A.; Matsuhara, H.; Nagao, T.; Naylor, D.; Pereira Santaella, M.; Pozzi, F.; Rodighiero, G.; Roelfsema, P.; Serjeant, S.; Vignali, C.; Wang, L.; Yamada, T.; Agenzia Spaziale Italiana (ASI); Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Spignoglio, L. [0000-0001-8840-1551]; Fernández Ontiveros, J. A. [0000-0001-9490-899X]; Gruppioni, C. [0000-0002-5836-4056]; Graziani, L. [0000-0002-9231-1505]; Unidad de Excelencia Científica María de Maeztu Instituto de Astrofísica de Cantabria, MDM-2017-0765; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We use the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) project as a template to demonstrate how deep spectrophotometric surveys covering large cosmological volumes over extended fields (1– ) with a mid-IR imaging spectrometer (17– ) in conjunction with deep photometry with a far-IR camera, at wavelengths which are not affected by dust extinction can answer the most crucial questions in current galaxy evolution studies. A SPICA-like mission will be able for the first time to provide an unobscured three-dimensional (3D, i.e. x, y, and redshift z) view of galaxy evolution back to an age of the universe of less than 2 Gyrs, in the mid-IR rest frame. This survey strategy will produce a full census of the Star Formation Rate (SFR) in the universe, using polycyclic aromatic hydrocarbons (PAH) bands and fine-structure ionic lines, reaching the characteristic knee of the galaxy luminosity function, where the bulk of the population is distributed, at any redshift up to . Deep follow-up pointed spectroscopic observations with grating spectrometers onboard the satellite, across the full IR spectral range (17– ), would simultaneously measure Black Hole Accretion Rate (BHAR), from high-ionisation fine-structure lines, and SFR, from PAH and low- to mid-ionisation lines in thousands of galaxies from solar to low metallicities, down to the knee of their luminosity functions. The analysis of the resulting atlas of IR spectra will reveal the physical processes at play in evolving galaxies across cosmic time, especially its heavily dust-embedded phase during the activity peak at the cosmic noon ( –3), through IR emission lines and features that are insensitive to the dust obscuration.