Examinando por Autor "Cabrera Lavers, A."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Interactions between large-scale radio structures and gas in a sample of optically selected type 2 quasars(EDP Sciences, 2021-06-10) Villar Martín, M.; Emonts, Bjorn H. C.; Cabrera Lavers, A.; Bellocchi, E.; Alonso Herrero, A.; Humphrey, A.; Dall´Agnol de Oliveira, B.; Storchi Bergmann, T.; Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Fundacao para a Ciencia e a Tecnologia (FCT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The role of radio mode feedback in non radio-loud quasars needs to be explored in depth to determine its true importance. Its effects can be identified based on the evidence of interactions between the radio structures and the ambient ionised gas. Aims. We investigate this interaction in a sample of 13 optically selected type 2 quasars (QSO2) at z < 0.2 with the Very Large Array (VLA) FIRST Survey radio detections, none of which are radio-loud. The ranges of [OIII]λ5007 and monochromatic radio luminosities are log(L[OIII]/erg s−1) ∼ 42.08–42.79 and log(P1.4 GHz/erg s−1 Hz−1) ∼ 30.08−31.76. All of them show complex optical morphologies, with signs of distortion across tens of kpc due to mergers and interactions. Methods. We searched for evidence of interactions between the radio structures and the ionised gas by characterising and comparing their morphologies. The former was traced by narrow band Hα images obtained with the GTC 10.4 m Spanish telescope and the Osiris instrument. The latter is traced by VLA radio maps obtained with A and B configurations to achieve both high resolution and brightness sensitivity. Results. The radio luminosity has an active galatic nucleus (AGN) component in 11 our of 13 QSO2, which is spatially extended in our radio data in 9 of them (jets, lobes, or other). The relative contribution of the extended radio emission to the total P1.4 GHz is in most cases in the range from 30% to 90%. The maximum sizes are in the range of dRmax of around a few to 500 kpc. The QSO2 undergoing interaction or merger events appear to be invariably associated with ionised gas spread over large spatial scales with maximum distances from the AGN in the range rmax ∼ 12−90 kpc. The morphology of the ionised gas at < 30 kpc is strongly influenced by AGN related processes. Evidence for radio-gas interactions exist in 10 out of 13 QSO2; that is, in all but one with confirmed AGN radio components. The interactions are identified across different spatial scales, from the nuclear narrow line region up to tens of kpc. Conclusions. Although this sample cannot be considered representative of the general population of QSO2, it supports the idea that large-scale low to modest power radio sources can exist in radio-quiet QSO2, which can provide a source of feedback on scales of the spheroidal component of galaxies and well into the circumgalactic medium, in systems where radiative mode feedback is expected to dominate.Publicación Acceso Abierto The OTELO survey I. Description, data reduction, and multi-wavelength catalogue(EDP Sciences, 2019-10-14) Ramón Pérez, M.; Pérez García, A. M.; Cepa, J.; Cerviño, M.; Nadolny, J.; Pérez Martínez, R.; Alfaro, Emilio J.; Castañeda, H. O.; De Diego, J. A.; Ederoclite, A.; Fernández Lorenzo, M.; Gallego, J.; González, J. J.; González Serrano, J. I.; Lara López, M. A.; Oteo Gómez, I.; Padilla Torres, C. P.; Pintos Castro, I.; Povic, M.; Sánchez Portal, M.; Jones, H.; Bland Hawthorn, J.; Cabrera Lavers, A.; Bongiovanni, Á.; Agence Nationale de la Recherche (ANR); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Bongiovanni, Á. [0000-0002-3557-3234]Context. The evolution of galaxies through cosmic time is studied observationally by means of extragalactic surveys. The usefulness of these surveys is greatly improved by increasing the cosmological volume, in either depth or area, and by observing the same targets in different wavelength ranges. A multi-wavelength approach using different observational techniques can compensate for observational biases. Aims. The OTELO survey aims to provide the deepest narrow-band survey to date in terms of minimum detectable flux and emission line equivalent width in order to detect the faintest extragalactic emission line systems. In this way, OTELO data will complements other broad-band, narrow-band, and spectroscopic surveys. Methods. The red tunable filter of the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC) is used to scan a spectral window centred at 9175 Å, which is free from strong sky emission lines, with a sampling interval of 6 Å and a bandwidth of 12 Å in the most deeply explored EGS region. Careful data reduction using improved techniques for sky ring subtraction, accurate astrometry, photometric calibration, and source extraction enables us to compile the OTELO catalogue. This catalogue is complemented with ancillary data ranging from deep X-ray to far-infrared, including high resolution HST images, which allow us to segregate the different types of targets, derive precise photometric redshifts, and obtain the morphological classification of the extragalactic objects detected. Results. The OTELO multi-wavelength catalogue contains 11 237 entries and is 50% complete at AB magnitude 26.38. Of these sources, 6600 have photometric redshifts with an uncertainty δ zphot better than 0.2 (1+zphot). A total of 4336 of these sources correspond to preliminary emission line candidates, which are complemented by 81 candidate stars and 483 sources that qualify as absorption line systems. The OTELO survey results will be released to the public on the second half of 2019.