Examinando por Autor "Moreno Paz, M."
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A multiplex antigen microarray for simultaneous IgG and IgM detection against SARS-CoV-2 reveals higher seroprevalence than reported(Society for Applied Microbiology, 2021-04-30) Ruano Gallego, D.; García Villadangos, M.; Moreno Paz, M.; Gómez Elvira, J.; Postigo, M.; Simón Sacristan, M.; Reyburn, H. T.; Carolis, C.; Rodrigo, N.; Codeseira, Y. B.; Rueda, P.; Zúñiga, Sonia; Enjuanes, L.; Parro García, V.; Agencia Estatal de Investigación (AEI); Consejo Superior de Investigaciones Científicas (CSIC); Comunidad de Madrid (CM); 0000-0002-2163-2088; 0000-0002-3928-3592; 0000-0003-1245-3253; 0000-0002-9068-9846; 0000-0002-4041-3788; 0000-0003-2855-1595; 000-0003-4240-1139; 0000-0002-6050-2446; 0000-0001-8120-7262; 0000-0002-7735-3766; 0000-0003-2549-6826; 0000-0002-0854-0226; 0000-0003-3738-0724; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The surge of SARS-CoV-2 has challenged health systems worldwide and efficient tests to detect viral particles, as well as antibodies generated against them, are needed. Specificity, sensitivity, promptness or scalability are the main parameters to estimate the final performance, but rarely all of them match in a single test. We have developed SCOVAM, a protein microarray with several viral antigens (spike, nucleocapsid, main protease Nsp5) as capturing probes in a fluorescence immunoassay for COVID-19 serological testing. SCOVAM depicts IgG and IgM antibody responses against each of these proteins of 22 individuals in a single microscope slide. It detects specific IgM (0.094 μg ml-1) and IgG (~0.017 μg ml-1) and is scalable and cost-effective. We validated SCOVAM by comparing with a widely used chemiluminescent commercial serological test (n = 742). SCOVAM showed twice the sensitivity and allowed following seroconversion in a single assay. By analysing the prevalence 4 months later in a subset of 76 positive sera, we still detected 93.42% of positives, almost doubling the detection of the commercial assay. The higher sensitivity of SCOVAM is especially relevant to screen sera for convalescent plasma-based treatments, high-throughput antibody response monitoring after vaccination or evaluation of vaccine efficiency.Publicación Acceso Abierto A Multiplex Immunosensor for Detecting Perchlorate-Reducing Bacteria for Environmental Monitoring and Planetary Exploration(Extreme Microbiology, 2020-12-16) Gallardo Carreño, Ignacio; Moreno Paz, M.; Aguirre, Jacobo; Blanco, Yolanda; Alonso Pintado, Eduardo; Raymond Bouchard, Isabelle; Maggiori, Catherine; Rivas, Luis A.; Engelbrektson, Anna; Whyte, Lyle; Parro García, V.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, CENTRO NACIONAL DE BIOTECNOLOGIA (CNB), SEV-2017-0712Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.Publicación Acceso Abierto Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits(Nature Publishing Group, 2023-02-21) Azua Bustos, A.; Fairén, A.; González Silva, C.; Prieto Ballesteros, O.; Carrizo, D.; Sánchez García, L.; Parro García, V.; Fernández Martínez, M. A.; Escudero, C.; Muñoz Iglesias, V.; Fernández Sampedro, M.; Molina, A.; García Villadangos, M.; Moreno Paz, M.; Wierzchos, J.; Ascaso, C.; Fornado, Teresa; Brucato, J. R.; Poggiali, G.; Manrique, J. A.; Veneranda, M.; López Reyes, G.; Sanz Arranz, A.; Rull, F.; Ollila, A. M.; Wiens, R. C.; Reyes Newell, Adriana; Clegg, S. M.; Millan, Maëva; Stewart Johnson, Sarah; McIntosh, Ophélie; Szopa, Cyril; Freissinet, Caroline; Sekine, Yasuhito; Fukushi, Keisuke; Morida, Koki; Inoue, Kosuke; Sakuma, Hiroshi; Rampe, E.; European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Japan Society for the Promotion of Science (JSPS); Comunidad de Madrid; National Aeronautics and Space Administration (NASA); Agenzia Spaziale Italiana (ASI); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan–fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as “dark microbiome”, and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.Publicación Acceso Abierto Geomicrobiological Heterogeneity of Lithic Habitats in the Extreme Environment of Antarctic Nunataks: A Potential Early Mars Analog(Extreme Microbiology, 2021-07-02) Fernández Martínez, M. A.; García Villadangos, M.; Moreno Paz, M.; Gangloff, V.; Carrizo, D.; Blanco, Y.; González, Y.; González, S.; Sánchez García, L.; Prieto Ballesteros, O.; Altshuler, I.; Whyte, Lyle; Parro García, V.; Fairén, Alberto G.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Comunidad de Madrid; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Nunataks are permanent ice-free rocky peaks that project above ice caps in polar regions, thus being exposed to extreme climatic conditions throughout the year. They undergo extremely low temperatures and scarcity of liquid water in winter, while receiving high incident and reflected (albedo) UVA-B radiation in summer. Here, we investigate the geomicrobiology of the permanently exposed lithic substrates of nunataks from Livingston Island (South Shetlands, Antarctic Peninsula), with focus on prokaryotic community structure and their main metabolic traits. Contrarily to first hypothesis, an extensive sampling based on different gradients and multianalytical approaches demonstrated significant differences for most geomicrobiological parameters between the bedrock, soil, and loose rock substrates, which overlapped any other regional variation. Brevibacillus genus dominated on bedrock and soil substrates, while loose rocks contained a diverse microbial community, including Actinobacteria, Alphaproteobacteria and abundant Cyanobacteria inhabiting the milder and diverse microhabitats within. Archaea, a domain never described before in similar Antarctic environments, were also consistently found in the three substrates, but being more abundant and potentially more active in soils. Stable isotopic ratios of total carbon (δ 13C) and nitrogen (δ 15N), soluble anions concentrations, and the detection of proteins involved in key metabolisms via the Life Detector Chip (LDChip), suggest that microbial primary production has a pivotal role in nutrient cycling at these exposed areas with limited deposition of nutrients. Detection of stress-resistance proteins, such as molecular chaperons, suggests microbial molecular adaptation mechanisms to cope with these harsh conditions. Since early Mars may have encompassed analogous environmental conditions as the ones found in these Antarctic nunataks, our study also contributes to the understanding of the metabolic features and biomarker profiles of a potential Martian microbiota, as well as the use of LDChip in future life detection missions.Publicación Restringido Mars-like UV Flux and Ionizing Radiation Differently Affect Biomarker Detectability in the Desert Cyanobacterium Chroococcidiopsis as Revealed by the Life Detector Chip Antibody Microarray(Mary Ann Liebert, Inc., publishers, 2022-10-03) Billi, Daniela; Blanco, Yolanda; Ianneo, Andrea; Moreno Paz, M.; Aguirre, Jacobo; Baqué, Mickael; Moeller, Ralf; De Vera, Jean Pierre; Parro García, V.The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.Publicación Acceso Abierto Simulating Mars Drilling Mission for Searching for Life: Ground-Truthing Lipids and Other Complex Microbial Biomarkers in the Iron-Sulfur Rich Río Tinto Analog.(Mary Ann Liebert Publishers, 2020-09-15) Sánchez García, L.; Fernández Martínez, M. A.; Moreno Paz, M.; Carrizo, D.; García Villadangos, M.; Manchado, J. M.; Stoker, C. R.; Glass, B.; Parro García, V.; Ministerio de Economía y Competitividad (MINECO); National Aeronautics and Space Administration (NASA); Sánchez García, L. [0000-0002-7444-1242]; Carrizo, D. [0000-0003-1568-4591]; Fernández Martínez, M. A. [0000-0003-1694-7832]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Sulfate and iron oxide deposits in Río Tinto (Southwestern Spain) are a terrestrial analog of early martian hematite-rich regions. Understanding the distribution and drivers of microbial life in iron-rich environments can give critical clues on how to search for biosignatures on Mars. We simulated a robotic drilling mission searching for signs of life in the martian subsurface, by using a 1m-class planetary prototype drill mounted on a full-scale mockup of NASA's Phoenix and InSight lander platforms. We demonstrated fully automated and aseptic drilling on iron and sulfur rich sediments at the Río Tinto riverbanks, and sample transfer and delivery to sterile containers and analytical instruments. As a ground-truth study, samples were analyzed in the field with the life detector chip immunoassay for searching microbial markers, and then in the laboratory with X-ray diffraction to determine mineralogy, gas chromatography/mass spectrometry for lipid composition, isotope-ratio mass spectrometry for isotopic ratios, and 16S/18S rRNA genes sequencing for biodiversity. A ubiquitous presence of microbial biomarkers distributed along the 1m-depth subsurface was influenced by the local mineralogy and geochemistry. The spatial heterogeneity of abiotic variables at local scale highlights the importance of considering drill replicates in future martian drilling missions. The multi-analytical approach provided proof of concept that molecular biomarkers varying in compositional nature, preservation potential, and taxonomic specificity can be recovered from shallow drilling on iron-rich Mars analogues by using an automated life-detection lander prototype, such as the one proposed for NASA's IceBreaker mission proposal.Publicación Acceso Abierto The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons(Mary Ann Liebert Publishers, 2020-09-15) Fairén, Alberto G.; Gómez Elvira, J.; Briones, C.; Prieto Ballesteros, O.; Rodríguez Manfredi, J. A.; López Heredero, R.; Belenguer, T.; Moral, A.; Moreno Paz, M.; Parro García, V.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Briones, C. [0000-0003-2213-8353]; Prieto Ballesteros, O. [0000-0002-2278-1210]; López Heredero, R. [0000-0002-2197-8388]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.Publicación Acceso Abierto Time-Integrative Multibiomarker Detection in Triassic–Jurassic Rocks from the Atacama Desert: Relevance to the Search for Basic Life Beyond Earth(Mary Ann Liebert Publishers, 2021-10-28) Sánchez García, L.; Carrizo, D.; Lezcano, M. A.; Moreno Paz, M.; Aeppli, C.; García Villadangos, M.; Prieto Ballesteros, O.; Demergasso, C.; Chong, G.; Parro García, V.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Detecting evidence of life on other planetary bodies requires a certain understanding of known biomarkers and their chemical nature, preservation potential, or biological specificity. In a planetary search for life, carbonates are of special interest due to their known association with life as we know it. On Earth, carbonates serve as an invaluable paleogeochemical archive of fossils of up to billions of years old. Here, we investigated biomarker profiles on three Chilean Triassic–Jurassic sedimentary records regarding our search for signs of past and present life over ∼200 Ma. A multianalytical platform that combines lipid-derived biomarkers, metaproteomics, and a life detector chip (LDChip) is considered in the detection of biomolecules with different perdurability and source-diagnosis potential. The combined identification of proteins with positive LDChip inmunodetections provides metabolic information and taxonomic affiliation of modern/subrecent biosignatures. Molecular and isotopic analysis of more perdurable hydrocarbon cores allows for the identification of general biosources and dominant autotrophic pathways over time, as well as recreation of prevailing redox conditions over ∼200 Ma. We demonstrate how extraterrestrial life detection can benefit from the use of different biomarkers to overcome diagnosis limitations due to a lack of specificity and/or alteration over time. Our findings have implications for future astrobiological missions to Mars.