Examinando por Autor "Rigopoulou, D."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A radio-jet driven outflow in the Seyfert 2 galaxy NGC 2110?(EDP Sciences, 2023-05-10) Peralta de Arriba, L.; Alonso Herrero, A.; García Burillo, S.; García Bernete, I.; Villar Martín, M.; García Lorenzo, B.; Davies, R. I.; Rosario, D.; Hönig, S. F.; Levenson, N. A.; Packham, C.; Ramos Almeida, C.; Pereira Santaella, M.; Audibert, A.; Bellocchi, E.; Hicks, E. K. S.; Labiano, Á.; Ricci, C.; Rigopoulou, D.; European Commission (EC); Gobierno de Canarias; University of Oxford; Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Ministerio de Ciencia e Innovación (MICINN); Science and Technology Facilities Council (STFC); Centros de Excelencia Severo Ochoa, CENTRO NACIONAL DE BIOTECNOLOGIA (CNB), SEV-2017-0712We present a spatially-resolved study of the ionised gas in the central 2 kpc of the Seyfert 2 galaxy NGC 2110 and investigate the role of its moderate luminosity radio jet (kinetic radio power of $P_\mathrm{jet} = 2.3 \times 10^{43}\mathrm{erg\ s^{-1}}$). We use new optical integral-field observations taken with the MEGARA spectrograph at GTC. We fit the emission lines with a maximum of two Gaussian components, except at the AGN position where we used three. Aided by existing stellar kinematics, we use the observed velocity and velocity dispersion of the emission lines to classify the different kinematic components. The disc component is characterised by lines with $\sigma \sim 60-200\ \mathrm{km\ s^{-1}}$. The outflow component has typical values of $\sigma \sim 700\ \mathrm{km\ s^{-1}}$ and is confined to the central 400 pc, which is coincident with linear part of the radio jet detected in NGC 2110. At the AGN position, the [O III]$\lambda$5007 line shows high velocity components reaching at least $1000\ \mathrm{km\ s^{-1}}$. This and the high velocity dispersions indicate the presence of outflowing gas outside the galaxy plane. Spatially-resolved diagnostic diagrams reveal mostly LI(N)ER-like excitation in the outflow and some regions in the disc, which could be due to the presence of shocks. However, there is also Seyfert-like excitation beyond the bending of the radio jet, probably tracing the edge of the ionisation cone that intercepts with the disc of the galaxy. NGC 2110 follows well the observational trends between the outflow properties and the jet radio power found for a few nearby Seyfert galaxies. All these pieces of information suggest that part of observed ionised outflow in NGC 2110 might be driven by the radio jet. However, the radio jet was bent at radial distances of 200 pc (in projection) from the AGN, and beyond there, most of the gas in the galaxy disc is rotating.Publicación Acceso Abierto Physics of ULIRGs with MUSE and ALMA: The PUMA project II. Are local ULIRGs powered by AGN? The subkiloparsec view of the 220 GHz continuum(EDP Sciences, 2021-07-12) Pereira Santaella, M.; Colina, L.; García Burillo, S.; Lamperti, I.; González Alfonso, E.; Perna, M.; Arribas, S.; Alonso Herrero, A.; Aalto, S.; Combes, F.; Labiano, Á.; Piqueras López, J.; Rigopoulou, D.; Van der Werf, P. P.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); Science and Technology Facilities Council (STFC); Pereira Santaella, M. [0000-0002-4005-9619]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We analyze new high-resolution (400 pc) ∼220 GHz continuum and CO(2–1) Atacama Large Millimeter Array (ALMA) observations of a representative sample of 23 local (z < 0.165) ultra-luminous infrared systems (ULIRGs; 34 individual nuclei) as part of the “Physics of ULIRGs with MUSE and ALMA” (PUMA) project. The deconvolved half-light radii of the ∼220 GHz continuum sources, rcont, are between < 60 pc and 350 pc (median 80–100 pc). We associate these regions with the regions emitting the bulk of the infrared luminosity (LIR). The good agreement, within a factor of 2, between the observed ∼220 GHz fluxes and the extrapolation of the infrared gray-body as well as the small contributions from synchrotron and free–free emission support this assumption. The cold molecular gas emission sizes, rCO, are between 60 and 700 pc and are similar in advanced mergers and early interacting systems. On average, rCO are ∼2.5 times larger than rcont. Using these measurements, we derived the nuclear LIR and cold molecular gas surface densities (ΣLIR = 1011.5 − 1014.3 L⊙ kpc−2 and ΣH2 = 102.9 − 104.2 M⊙ pc−2, respectively). Assuming that the LIR is produced by star formation, the median ΣLIR corresponds to ΣSFR = 2500 M⊙ yr−1 kpc−2. This ΣSFR implies extremely short depletion times, ΣH2/ΣSFR < 1–15 Myr, and unphysical star formation efficiencies > 1 for 70% of the sample. Therefore, this favors the presence of an obscured active galactic nucleus (AGN) in these objects that could dominate the LIR. We also classify the ULIRG nuclei in two groups: (a) compact nuclei (rcont < 120 pc) with high mid-infrared excess emission (ΔL6−20 μm/LIR) found in optically classified AGN; and (b) nuclei following a relation with decreasing ΔL6−20 μm/LIR for decreasing rcont. The majority, 60%, of the nuclei in interacting systems lie in the low-rcont end (<120 pc) of this relation, while this is the case for only 30% of the mergers. This suggests that in the early stages of the interaction, the activity occurs in a very compact and dust-obscured region while, in more advanced merger stages, the activity is more extended, unless an optically detected AGN is present. Approximately two-thirds of the nuclei have nuclear radiation pressures above the Eddington limit. This is consistent with the ubiquitous detection of massive outflows in local ULIRGs and supports the importance of the radiation pressure in the outflow launching process.