Examinando por Autor "Amils, R."
Mostrando 1 - 10 de 10
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Astrobiology of life on Earth(Society for Applied Microbiology, 2021-04-05) Hallsworth, J. E.; Mancinelli, R. L.; Conley, C. A.; Dallas, T. D.; Rinaldi, T.; Davila, A. F.; Benison, K. C.; Rapoport, A.; Cavalazzi, B.; Selbmann, L.; Changela, H.; Westall, F.; Yakimov, M. M.; Amils, R.; Madigan, M. T.; Biotechnology and Biological Sciences Research Council (BBSRC); Hallsworth, J. E. [0000-0001-6797-9362]; Mancinelli, R. L. [0000-0002-8200-4878]; Dallas, T. D. [0000-0002-5310-9857]; Rinaldi, T. [0000-0001-6291-245X]; Benison, K. C. [0000-0001-6104-2333]; Rapoport, A. [0000-0002-6185-0039]; Selbmann, L. [0000-0002-8967-3329]; Amils, R. [0000-0002-7560-1033]Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue ‘Ecophysiology of Extremophiles’. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.Publicación Acceso Abierto Broad-band high-resolution rotational spectroscopy for laboratory astrophysics(EDP Science, 2019-06-07) Cernicharo, J.; Gallego, J. D.; López Pérez, Jose A.; Tercero, Felix; Tanarro, I.; Beltrán, F.; De Vicente, P.; Lauwaet, K.; Alemán, Belén; Moreno, E.; Herrero, V. J.; Doménech, Jose Luis; Ramírez, S. I.; Bermúdez, Celina; Peláez, R. J.; Patino Esteban, Marina; López Fernández, Isaac; García Álvaro, Sonia; García Carreño, Pablo; Cabezas, Carlos; Malo, Inmaculada; Amils, R.; Sobrado, J. M.; Díez González, C.; Hernandéz, Jose M.; Tercero, B.; Santoro, G.; Martínez, L.; Castellanos, Marcelo; Vaquero Jiménez, B.; Pardo, Juan R.; Barbas, L.; López Fernández, Jose Antonio; Aja, B.; Leuther, A.; Martín-Gago, J. A.; Instituto Nacional de Técnica Aeroespacial (INTA); European Commission (EC); Agencia Estatal de Investigación (AEI)We present a new experimental set-up devoted to the study of gas phase molecules and processes using broad-band high spectral resolution rotational spectroscopy. A reactor chamber is equipped with radio receivers similar to those used by radio astronomers to search for molecular emission in space. The whole range of the Q (31.5–50 GHz) and W bands (72–116.5 GHz) is available for rotational spectroscopy observations. The receivers are equipped with 16 × 2.5 GHz fast Fourier transform spectrometers with a spectral resolution of 38.14 kHz allowing the simultaneous observation of the complete Q band and one-third of the W band. The whole W band can be observed in three settings in which the Q band is always observed. Species such as CH3CN, OCS, and SO2 are detected, together with many of their isotopologues and vibrationally excited states, in very short observing times. The system permits automatic overnight observations, and integration times as long as 2.4 × 105 s have been reached. The chamber is equipped with a radiofrequency source to produce cold plasmas, and with four ultraviolet lamps to study photochemical processes. Plasmas of CH4, N2, CH3CN, NH3, O2, and H2, among other species, have been generated and the molecular products easily identified by the rotational spectrum, and via mass spectrometry and optical spectroscopy. Finally, the rotational spectrum of the lowest energy conformer of CH3CH2NHCHO (N-ethylformamide), a molecule previously characterized in microwave rotational spectroscopy, has been measured up to 116.5 GHz, allowing the accurate determination of its rotational and distortion constants and its search in space.Publicación Acceso Abierto Draft Genome Sequence of Pseudomonas sp. Strain T2.31D-1, Isolated from a Drilling Core Sample Obtained 414 Meters below Surface in the Iberian Pyrite Belt(American Society for Microbiology, 2021-01-07) Martínez, J. M.; Escudero, C.; Leandro, T.; Mateos, G.; Amils, R.; Ministerio de Ciencia e Innovación (MICINN); 0000-0003-3954-2985; 0000-0003-1240-4144; 0000-0002-7560-1033We report the draft genome of Pseudomonas sp. strain T2.31D-1, which was isolated from a drilling core sample obtained 414 m below surface in the Iberian Pyrite Belt. The genome consists of a 4.7-Mb chromosome with 4,428 coding sequences, 1 rRNA operon, 59 tRNA genes, and a 31.8-kb plasmid.Publicación Acceso Abierto Draft genome sequence of shewanella sp. strain T2.3D-1.1, isolated from 121.8 meters deep in the subsurface of the iberian pyrite belt(American Society for Microbiology, 2020-10-01) De Francisco Polanco, S.; Martínez, J. M.; Leandro, T.; Amils, R.; Agencia Estatal de Investigación (AEI); De Francisco Polanco, S. [0000-0002-1192-0502]; Martínez, J. M. [0000-0003-3954-2985]; Amils Pibernat, R. [0000-0002-7560-1033]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Shewanella sp. strain T2.3D-1.1 was isolated from the deep subsurface of the Iberian Pyrite Belt. We report its draft genome sequence, consisting of 49 scaffolds, with a chromosome of approximate to 4.6 Mb and a 23.8-kb plasmid. The chromosome annotation identified 4,068 coding DNA sequences, 1 rRNA operon, and 108 tRNA genes.Publicación Acceso Abierto Editorial: Archaea in the Environment: Views on Archaeal Distribution, Activity, and Biogeography(Frontiers Media Extreme Microbiology, 2021-03-12) Teske, A.; Amils, R.; Ramírez, G. A.; Reysenbach, A. L.; 0000-0001-8122-4898Publicación Acceso Abierto Extremofiles 2.0(Multidisciplinary Digital Publishing Institute (MDPI), 2021-04-09) Amils, R.; Gómez, F.; Amils, R. [0000-0002-7560-1033]; Gómez, F. [0000-0001-9977-7060]Publicación Acceso Abierto Impact of Simulated Martian Conditions on (Facultatively) Anaerobic Bacterial Strains from Different Mars Analogue Sites.(Multidisciplinary Digital Publishing Institute (MDPI), 2020-01-15) Beblo Vranesevic, K.; Bohmeier, M.; Schleumer, S.; Rabbow, E.; Perras, A. K.; Moissi Eichinger, C.; Schwendner, P.; Cockell, C. S.; Vannier, P.; Marteinsson, V. T.; Monaghan, E. P.; Riedo, A.; Ehrenfreund, P.; García Descalzo, L.; Gómez, F.; Malki, M.; Amils, R.; Gaboyer, F.; Hickman-Lewis, K.; Westall, F.; Cabezas, P.; Walter, N.; Rettberg, P.; Rettberg, P. [0000-0003-4439-2395]; García Descalzo, L. [0000-0002-0083-6786]; Cabezas, P. [0000-0002-6336-4093]; Marteinsson, V. [0000-0001-8340-821X]; Gómez, F. [0000-0001-9977-7060]Five bacterial (facultatively) anaerobic strains, namely Buttiauxella sp. MASE-IM-9, Clostridium sp. MASE-IM-4, Halanaerobium sp. MASE-BB-1, Trichococcus sp. MASE-IM-5, and Yersinia intermedia MASE-LG-1 isolated from different extreme natural environments were subjected to Mars relevant environmental stress factors in the laboratory under controlled conditions. These stress factors encompassed low water activity, oxidizing compounds, and ionizing radiation. Stress tests were performed under permanently anoxic conditions. The survival rate after addition of sodium perchlorate (Na-perchlorate) was found to be species-specific. The inter-comparison of the five microorganisms revealed that Clostridium sp. MASE-IM-4 was the most sensitive strain (D-10-value (15 min, NaClO4) = 0.6 M). The most tolerant microorganism was Trichococcus sp. MASE-IM-5 with a calculated D-10-value (15 min, NaClO4) of 1.9 M. Cultivation in the presence of Na-perchlorate in Martian relevant concentrations up to 1 wt% led to the observation of chains of cells in all strains. Exposure to Na-perchlorate led to a lowering of the survival rate after desiccation. Consecutive exposure to desiccating conditions and ionizing radiation led to additive effects. Moreover, in a desiccated state, an enhanced radiation tolerance could be observed for the strains Clostridium sp. MASE-IM-4 and Trichococcus sp. MASE-IM-5. These data show that anaerobic micro-organisms from Mars analogue environments can resist a variety of Martian-simulated stresses either individually or in combination. However, responses were species-specific and some Mars-simulated extremes killed certain organisms. Thus, although Martian stresses would be expected to act differentially on microorganisms, none of the expected extremes tested here and found on Mars prevent the growth of anaerobic microorganisms.Publicación Restringido Subsurface and surface halophile communities of the chaotropic Salar de Uyuni(Society for Applied Microbiology, 2021-01-28) Martínez, J. M.; Escudero, C.; Rodíguez, N.; Rubin, S.; Amils, R.; Ministerio de Economía y Competitividad (MINECO); 0000-0003-3954-2985; 0000-0002-3387-7760; 0000-0002-7560-1033; 0000-0003-1240-4144; 0000-0003-4109-4851Salar de Uyuni (SdU) is the biggest athalosaline environment on Earth, holding a high percentage of the known world Li reserves. Due to its hypersalinity, temperature and humidity fluctuations, high exposure to UV radiation, and its elevated concentration of chaotropic agents like MgCl2, LiCl and NaBr, SdU is considered a polyextreme environment. Here, we report the prokaryotic abundance and diversity of 46 samples obtained in different seasons and geographical areas. The identified bacterial community was found to be more heterogeneous than the archaeal community, with both communities varying geographically. A seasonal difference has been detected for archaea. Salinibacter, Halonotius and Halorubrum were the most abundant genera in Salar de Uyuni. Different unclassified archaea were also detected. In addition, the diversity of two subsurface samples obtained at 20 and 80 m depth was evaluated and compared with the surface data, generating an evolutionary record of a multilayer hypersaline ecosystem.Publicación Acceso Abierto Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites(Spring Nature Research Journals, 2021-02-18) Kristin Bashir, A.; Wink, L.; Duller, S.; Schwendner, P.; Cockell, C.; Rettberg, P.; Mahnert, A.; Beblo Vranesevic, K.; Bohmeier, M.; Rabbow, E.; Gaboyer, F.; Westall, F.; Walter, N.; Cabezas, P.; García Descalzo, L.; Gómez, F.; Malki, M.; Amils, R.; Ehrenfreund, P.; Monaghan, E. P.; Vannier, P.; Marteinsson, V. T.; Erlacher, A.; Tanski, G.; Strauss, J.; Bashir, M.; Riedo, A.; Moissi Eichinger, C.; European Commission (EC); Swiss National Science Foundation (SNSF); Moissi Eichinger, C. [0000-0001-6755-6263]Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth’s ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders.Ítem Acceso Abierto Zoé(Gobierno de España: Ministerio de Defensa, 2011-05-15) Cuesta Crespo, L.; Ruiz Zelmanovitch, B.; Vaquerizo Gallego, J. A.; Montesinos Comino, B.; Cuevas Manrubia, S.; Gómez Gómez, F.; Martín Torres, Javier; Martín Soler, J.; Gómez Elvira, J.; Cernicharo, J.; Mas Hesse, J. M.; Parro García, V.; Amils, R.; Rodríguez Manfredi, J. A.La pregunta “¿Hay vida en otros lugares del Universo?” tenía, hasta hace poco, únicamente implicaciones filosóficas. Pero, actualmente se está empezando a abordar desde otros campos de la Ciencia. Precisamente, la Astrobiología aglutina todos los esfuerzos dirigidos a encontrar su respuesta, tratando de entender cómo son los procesos por los que una nube de polvo interestelar llega a transformarse en un sistema planetario en el que alguno de sus cuerpos se desarrolla de tal forma que aparecen microorganismos que lo pueblan y evolucionan. El reto de la Astrobiología es fabuloso y, embarcarse en esa misión, es realmente una aventura: la “aventura de la vida”. “La divulgación es una obligación que tiene la comunidad científica y tecnológica con la sociedad”: ésta es una frase que, desgraciadamente, todavía no ha calado lo suficiente en nuestra comunidad. Quizás el problema esté en nuestra formación: nadie nos ha enseñado a hacerlo y muchos no sabemos cómo se hace, pero nuestra obligación es intentarlo, porque es realmente una obligación para con la sociedad. No cabe duda de que la divulgación en Astrobiología es muy atractiva para el gran público por el interés del tema que aborda y porque su multidisciplinariedad atrae a “curiosos” de muchas áreas. Desde su creación, de la mano de Juan Pérez-Mercader, el Centro de Astrobiología (CSIC-INTA) ha considerado la divulgación como una de sus actividades básicas: esta revista es un intento más en esa dirección. Con ella, no sólo se quiere informar a la sociedad de sus actividades más relevantes, sino que pretende ser un “imán” para atraer hacia la ciencia y la tecnología a todo aquel que sienta curiosidad y quiera satisfacerla. D. Jaime Denís Zambrana – Director General del Instituto Nacional de Técnica Aeroespacial (INTA)