Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Usero, A."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 3 de 3
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    ALMA observations of CS in NGC 1068: Chemistry and excitation
    (Oxford Academics: Blackwell Publishing, 2020-07-02) Scourfield, M.; Viti, S.; García Burillo, S.; Saintonge, A.; Combes, F.; Fuente, A.; Henkel, C.; Alonso Herrero, A.; Harada, N.; Takano, S.; Nakajima, T.; Martín, S.; Krips, M.; Van der Werf, P. P.; Aalto, S.; Usero, A.; Kohno, K.; Agencia Estatal de Investigación (AEI); Alonso Herrero, A. [0000-0001-6794-2519]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We present results from Atacama Large Millimeter/submillimeter Array (ALMA) observations of CS from the nearby galaxy NGC 1068 (∼14 Mpc). This Seyfert 2 barred galaxy possesses a circumnuclear disc (CND, r ∼ 200 pc) and a starburst ring (SB ring, r ∼ 1.3 kpc). These high-resolution maps (∼0.5 arcsec, ∼35 pc) allow us to analyse specific sub-regions in the galaxy and investigate differences in line intensity ratios and physical conditions, particularly those between the CND and SB ring. Local thermodynamic equilibrium (LTE) analysis of the gas is used to calculate CS densities in each sub-region, followed by the non-LTE analysis conducted using the radiative transfer code RADEX to fit observations and constrain gas temperature, CS column density and hydrogen density. Finally, the chemical code UCLCHEM is used to reconstruct the gas, allowing an insight into its origin and chemical history. The density of hydrogen in the CND is found to be ≥105 cm−2, although exact values vary, reaching 106 cm−2 at the active galactic nucleus. The conditions in the two arms of the SB ring appear similar to one another, though the density found (∼104 cm−2) is lower than in the CND. The temperature in the CND increases from east to west, and is also overall greater than found in the SB ring. These modelling methods indicate the requirement for multiphase gas components in order to fit the observed emission over the galaxy. A larger number of high-resolution transitions across the SLED may allow for further constraining of the conditions, particularly in the SB ring.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Excitation and acceleration of molecular outflows in LIRGs: The extended ESO 320-G030 outflow on 200-pc scales
    (EDP Sciences, 2020-11-06) Pereira Santaella, M.; Colina, L.; García Burillo, S.; González Alfonso, E.; Alonso Herrero, A.; Arribas, S.; Cazzoli, S.; Piqueras López, J.; Rigopoulou, D.; Usero, A.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); Usero, A. [0000-0003-1242-505X]; Pereira Santaella, M. [0000-0002-4005-9619]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    We used high-spatial resolution (70 pc; 03) CO multi-transition (J = 1–0, 2–1, 4–3, and 6–5) ALMA data to study the physical conditions and kinematics of the cold molecular outflow in the local luminous infrared galaxy (LIRG) ESO 320-G030 (d = 48 Mpc, LIR/L⊙ = 1011.3). ESO 320-G030 is a double-barred isolated spiral, but its compact and obscured nuclear starburst (SFR ∼ 15 M⊙ yr−1; AV ∼ 40 mag) resembles those of ultra-luminous infrared galaxies (LIR/L⊙ > 1012). In the outflow, the CO(1–0)/CO(2–1) ratio is enhanced with respect to the rest of the galaxy and the CO(4–3) transition is undetected. This indicates that the outflowing molecular gas is less excited than the molecular gas in the nuclear starburst (i.e., outflow launching site) and in the galaxy disk. Non-local thermodynamic equilibrium radiative transfer modeling reveals that the properties of the molecular clouds in the outflow differ from those of the nuclear and disk clouds: The kinetic temperature is lower (Tkin ∼ 9 K) in the outflow, and the outflowing clouds have lower column densities. Assuming a 10−4 CO abundance, the large internal velocity gradients, 60−45+250 km s−1 pc−1, imply that the outflowing molecular clouds are not bound by self-gravity. All this suggests that the life-cycle (formation, collapse, dissipation) of the galaxy disk molecular clouds might differ from that of the outflowing molecular clouds which might not be able to form stars. The low kinetic temperature of the molecular outflow remains constant at radial distances between 0.3 and 1.7 kpc. This indicates that the heating by the hotter ionized outflow phase is not efficient and may favor the survival of the molecular gas phase in the outflow. The spatially resolved velocity structure of the outflow shows a 0.8 km s−1 pc−1 velocity gradient between 190 pc and 560 pc and then a constant maximum outflow velocity of about 700–800 km s−1 up to 1.7 kpc. This could be compatible with a pure gravitational evolution of the outflow, which would require coupled variations of the mass outflow rate and the outflow launching velocity distribution. Alternatively, a combination of ram pressure acceleration and cloud evaporation could explain the observed kinematics and the total size of the cold molecular phase of the outflow.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Searching for molecular gas inflows and outflows in the nuclear regions of five Seyfert galaxies.
    (EDP Sciences, 2020-11-13) Domínguez Fernández, A. J.; Alonso Herrero, A.; García Burillo, S.; Davies, R. I.; Usero, A.; Labiano, Á.; Levenson, N. A.; Pereira Santaella, M.; Imanishi, M.; Ramos Almeida, C.; Rigopoulou, D.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Comunidad de Madrid; Science and Technology Facilities Council (STFC); Ramos Almeida, C. [https://orcid.org/0000-0001-8353-649X]; Davies, R. [https://orcid.org/0000-0003-4949-7217]; Alonso Herrero, A. [https://orcid.org/0000-0001-6794-2519]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Active galactic nucleus (AGN) driven outflows are believed to play an important role in regulating the growth of galaxies, mostly via negative feedback. However, their effects on their hosts are far from clear, especially for low- and moderate-luminosity Seyferts. To investigate this issue, we obtained cold molecular gas observations, traced by the CO(2-1) transition, using the NOEMA interferometer of five nearby (distances between 19 and 58 Mpc) Seyfert galaxies. The resolution of ∼0.3–0.8 (∼30–100 pc) and field of view of NOEMA allowed us to study the CO(2-1) morphology and kinematics in the nuclear regions (∼100 pc) and up to radial distances of ∼900 pc. We detected CO(2-1) emission in all five galaxies with disky or circumnuclear ring-like morphologies. We derived cold molecular gas masses on nuclear (∼100 pc) and circumnuclear (∼650 pc) scales in the range from 106 to 107 M⊙ and from 107 to 108 M⊙, respectively. In all of our galaxies, the bulk of this gas is rotating in the plane of the galaxy. However, noncircular motions are also present. In NGC 4253, NGC 4388, and NGC 7465, we can ascribe the streaming motions to the presence of a large-scale bar. In Mrk 1066 and NGC 4388, the noncircular motions in the nuclear regions are explained as outflowing material due to the interaction of the AGN wind with molecular gas in the galaxy disk. We conclude that for an unambiguous and precise interpretation of the kinematics of the cold molecular gas, we need detailed knowledge of the host galaxy (i.e., presence of bars, interactions, etc.), and also of the ionized gas kinematics and ionization cone geometry.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias