Examinando por Autor "Testi, L."
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Bipolar molecular outflow of the very low-mass star Par-Lup3-4: Evidence for scaled-down low-mass star formation(EDP Sciences, 2020-07-31) Santamaría Miranda, A.; De Gregorio Monsalvo, I.; Huélamo, N.; Plunkett, A. L.; Ribas, Á.; Comerón, F.; Chreiber, M. R.; López, C.; Muzic, K.; Testi, L.; Agencia Estatal de Investigación (AEI); 0000-0001-6267-2820; 0000-0003-4518-407X; 0000-0002-2711-8143; 0000-0002-9912-5705; 0000-0002-7838-2606; 0000-0003-3903-8009; 0000-0002-7989-2595; 0000-0003-1859-3070; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Very low-mass stars are known to have jets and outflows, which is indicative of a scaled-down version of low-mass star formation. However, only very few outflows in very low-mass sources are well characterized. Aims. We characterize the bipolar molecular outflow of the very low-mass star Par-Lup3-4, a 0.12 M-circle dot object known to power an optical jet. Methods. We observed Par-Lup3-4 with ALMA in Bands 6 and 7, detecting both the continuum and CO molecular gas. In particular, we studied three main emission lines: CO(2-1), CO(3-2), and (CO)-C-13(3-2). Results. Our observations reveal for the first time the base of a bipolar molecular outflow in a very low-mass star, as well as a stream of material moving perpendicular to the primary outflow of this source. The primary outflow morphology is consistent with the previously determined jet orientation and disk inclination. The outflow mass is 9.5 x 10(-7)M(circle dot), with an outflow rate of 4.3 x 10(-9)M(circle dot) yr(-1). A new fitting to the spectral energy distribution suggests that Par-Lup3-4 may be a binary system. Conclusions. We have characterized Par-Lup3-4 in detail, and its properties are consistent with those reported in other very low-mass sources. This source provides further evidence that very low-mass sources form as a scaled-down version of low-mass stars.Publicación Restringido FAUST I. The hot corino at the heart of the prototypical Class I protostar L1551 IRS5.(Oxford Academics: Oxford University Press, 2020-07-21) Bianchi, S.; Chandler, C. J.; Ceccarelli, C.; Codella, C.; Sakai, N.; López Sepulcre, A.; Maud, L. T.; Moellenbrock, G.; Svoboda, B.; Watanabe, Y.; Sakai, T.; Ménard, F.; Aikawa, Y.; Alves, F.; Balucani, N.; Bouvier, M.; Caselli, P.; Caux, E.; Charnley, S.; Choudhury, S.; De Simone, M.; Dulieu, F.; Durán, A.; Evans, L.; Favre, C.; Fedele, D.; Feng, S.; Fontani, F.; Francis, L.; Hama, T.; Hanawa, T.; Herbst, E.; Hirota, T.; Imai, M.; Isella, A.; Jiménez Serra, I.; Johnstone, D.; Kahane, C.; Lefloch, B.; Loinard, L.; Maureira, M. J.; Mercimek, S.; Miotello, A.; Mori, S.; Nakatani, R.; Nomura, H.; Oba, Y.; Ohashi, S.; Okoda, Y.; Ospina Zamudio, J.; Oya, Y.; Pineda, J.; Podio, L.; Rimola, A.; Segura Cox, D.; Shirley, Y.; Taquet, V.; Testi, L.; Vastel, C.; Viti, S.; Watanabe, N.; Witzel, A.; Xue, C.; Zhao, B.; Zhang, Y.; Yamamoto, S.; European Research Council (ERC); Japan Society for the Promotion of Science (KAKENHI); Agencia Estatal de Investigación (AEI); Universidad Nacional Autónoma de México (UNAM); Agence Nationale de la Recherche (ANR); Balucani, N. [0000-0001-5121-5683]; De Oliveira Alves, F. [0000-0002-7945-064X]; Hama, T. [0000-0002-4991-4044]; Ohashi, S. [0000-0002-9661-7958]; Johnstone, D. [0000-0002-6773-459X]; Watanabe, Y. [0000-0002-9668-3592]; Ceccarelli, C. [0000-0001-9664-6292]; Pineda, J. [0000-0002-3972-1978]; Fedele, D. [0000-0001-6156-0034]; Mercimek, S. [0000-0002-0742-7934]; Xue, C. [0000-0003-2760-2119]; Sakai, N. [0000-0002-3297-4497]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The study of hot corinos in solar-like protostars has been so far mostly limited to the Class 0 phase, hampering our understanding of their origin and evolution. In addition, recent evidence suggests that planet formation starts already during Class I phase, which therefore represents a crucial step in the future planetary system chemical composition. Hence, the study of hot corinos in Class I protostars has become of paramount importance. Here, we report the discovery of a hot corino towards the prototypical Class I protostar L1551 IRS5, obtained within the ALMA (Atacama Large Millimeter/submillimeter Array) Large Program FAUST (Fifty AU STudy of the chemistry in the disc/envelope system of solar-like protostars). We detected several lines from methanol and its isotopologues (13CH3OH and CH2DOH), methyl formate, and ethanol. Lines are bright towards the north component of the IRS5 binary system, and a possible second hot corino may be associated with the south component. The methanol lines' non-LTE analysis constrains the gas temperature (∼100 K), density (≥1.5 × 108 cm−3), and emitting size (∼10 au in radius). All CH3OH and 13CH3OH lines are optically thick, preventing a reliable measure of the deuteration. The methyl formate and ethanol relative abundances are compatible with those measured in Class 0 hot corinos. Thus, based on this work, little chemical evolution from Class 0 to I hot corinos occurs.Publicación Acceso Abierto FAUST. II. Discovery of a Secondary Outflow in IRAS 15398−3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?(The Institute of Physics (IOP), 2021-03-22) Okoda, Y.; Oya, Y.; Francis, L.; Johnstone, D.; Inutsuka, S. I.; Ceccarelli, C.; Codella, C.; Chandler, C. J.; Sakai, N.; Aikawa, Y.; Alves, F.; Balucani, N.; Bianchi, E.; Bouvier, M.; Caselli, P.; Caux, E.; Charnley, S.; Choudhury, S.; De Simone, M.; Dulieu, F.; Durán, A.; Evans, L.; Favre, C.; Fedele, D.; Feng, S.; Fontani, F.; Hama, T.; Hanawa, T.; Herbst, E.; Hirota, T.; Imai, M.; Isella, A.; Jiménez Serra, I.; Kahane, C.; Lefloch, B.; Loinard, L.; López Sepulcre, A.; Maud, L. T.; Maureira, M. J.; Ménard, F.; Mercimek, S.; Miotello, A.; Moellenbrock, G.; Mori, S.; Murillo, Nadia M.; Nakatani, R.; Nomura, H.; Oba, Y.; O´Donoghue, R.; Ohashi, S.; Ospina Zamudio, J.; Pineda, J. E.; Podio, L.; Rimola, A.; Sakai, T.; Segura Cox, D.; Shirley, Y.; Svoboda, B.; Taquet, V.; Testi, L.; Vastel, C.; Viti, S.; Watanabe, N.; Watanabe, Y.; Witzel, A.; Xue, C.; Zhang, Y.; Zhao, B.; Yamamoto, S.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Japan Society for the Promotion of Science (JSPS); Okoda, Y. [0000-0003-3655-5270]; Oya, Y. [0000-0002-0197-8751]; Francis, L. [0000-0001-8822-6327]; Johnstone, D. [0000-0002-6773-459X]; Inutsuka, S. I. [0000-0003-4366-6518]; Ceccarelli, C. [0000-0001-9664-6292]; Codella, C. [0000-0003-1514-3074]; Chandler, C. [0000-0002-7570-5596]; Sakai, N. [0000-0002-3297-4497]; Aikawa, Y. [0000-0003-3283-6884]; Alves, F. [0000-0002-7945-064X]; Balucani, N. [0000-0001-5121-5683]; Bianchi, E. [0000-0001-9249-7082]; Bouvier, M. [0000-0003-0167-0746]; Caselli, P. [0000-0003-1481-7911]; De Simone, M. [0000-0001-5659-0140]; Feng, S. [0000-0002-4707-8409]; Fontani, F. [0000-0003-0348-3418]; Hama, T. [0000-0002-4991-4044]; Hanawa, T. [0000-0002-7538-581X]; Herbst, E. [0000-0002-4649-2536]; Hirota, T. [0000-0003-1659-095X]; Imai, M. [0000-0002-5342-6262]; Isella, A. [0000-0001-8061-2207]; Jiménez Serra, I. [0000-0003-4493-8714]; Kahane, C. [0000-0003-1691-4686]; Loinard, L. [0000-0002-5635-3345]; López Sepulcre, A. [0000-0002-6729-3640]; Maud, L. T. [0000-0002-7675-3565]; Maureira, M. J. [0000-0002-7026-8163]; Menard, F. [0000-0002-1637-7393]; Miotello, A. [0000-0002-7997-2528]; Moellenbrock, G. [0000-0002-3296-8134]; Oba, Y. [0000-0002-6852-3604]; Ohashi, S. [0000-0002-9661-7958]; Pineda, J. E. [0000-0002-3972-1978]; Rimola, A. [0000-0002-9637-4554]; Sakai, T. [0000-0003-4521-7492]; Segura Cox, D. [0000-0003-3172-6763]; Svoboda, B. [0000-0002-8502-6431]; Taquet, V. [0000-0003-0407-7489]We have observed the very low-mass Class 0 protostar IRAS 15398−3359 at scales ranging from 50 to 1800 au, as part of the Atacama Large Millimeter/Submillimeter Array Large Program FAUST. We uncover a linear feature, visible in H2CO, SO, and C18O line emission, which extends from the source in a direction almost perpendicular to the known active outflow. Molecular line emission from H2CO, SO, SiO, and CH3OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398−3359, by 1200 au. The arc-like structure is blueshifted with respect to the systemic velocity. A velocity gradient of 1.2 km s−1 over 1200 au along the linear feature seen in the H2CO emission connects the protostar and the arc-like structure kinematically. SO, SiO, and CH3OH are known to trace shocks, and we interpret the arc-like structure as a relic shock region produced by an outflow previously launched by IRAS 15398−3359. The velocity gradient along the linear structure can be explained as relic outflow motion. The origins of the newly observed arc-like structure and extended linear feature are discussed in relation to turbulent motions within the protostellar core and episodic accretion events during the earliest stage of protostellar evolution.Publicación Acceso Abierto Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC 1333-IRAS4A(EDP Sciences, 2020-05-15) Taquet, V.; Codella, C.; De Simone, M.; López Sepulcre, A.; Pineda, J. E.; Segura Cox, D.; Ceccarelli, C.; Caselli, P.; Gusdorf, A.; Persson, M. V.; Alves, F.; Caux, E.; Favre, C.; Fontani, F.; Neri, R.; Oya, Y.; Sakai, N.; Vastel, C.; Yamamoto, S.; Bachiller, R.; Balucani, N.; Bianchi, E.; Bizzocchi, L.; Chacón Tanarro, A.; Dulieu, F.; Enrique Romero, J.; Feng, S.; Holdship, J.; Lefloch, B.; Al Edhari, A. J.; Jiménez Serra, I.; Kahane, C.; Lattanzi, V.; Ospina Zamudio, J.; Podio, L.; Punanova, A.; Rimola, A.; Sims, I. R.; Spezzano, S.; Testi, L.; Theulé, P.; Ugliengo, P.; Vasyunin, A. I.; Vazart, F.; Viti, S.; Witzel, A.; Agence Nationale de la Recherche (ANR); European Research Council (ERC); Ceccarelli, C. [0000-0001-9664-6292]; Balucani, N. [0000-0001-5121-5683]; Rimola, A. [0000-0002-9637-4554]; Al Edhari, A. J. [0000-0003-4089-841X]; De Oliveira Alves, F. [0000-0002-7945-064X]; Lefloch, B. [0000-0002-9397-3826]; Persson, M. V. [0000-0002-1100-5734]; Bachiller, R. [0000-0002-5331-5386]; Pineda, J. [0000-0002-3972-1978]; Segura Cox, D. [0000-0003-3172-6763]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC 1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC 1333-IRAS4A in the 1.3, 2, and 3 mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east–south west direction. SO is detected at extremely high radial velocity up to + 25 km s−1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm−3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2.Publicación Acceso Abierto Seeds of Life in Space (SOLIS) VII. Discovery of a cold dense methanol blob toward the L1521F VeLLO system.(EDP Sciences, 2020-04-02) Favre, C.; Vastel, C.; Jiménez Serra, I.; Quénard, D.; Caselli, P.; Ceccarelli, C.; Chacón Tanarro, A.; Fontani, F.; Holdship, J.; Oya, Y.; Punanova, A.; Saki, N.; Spezzano, S.; Yamamoto, S.; Neri, R.; López Sepulcre, A.; Alves, F.; Bachiller, R.; Balucani, N.; Bianchi, E.; Bizzocchi, L.; Codella, C.; Caux, E.; De Simone, M.; Enrique Romero, J.; Dulieu, F.; Feng, S.; Al Edhari, A. J.; Lefloch, B.; Ospina Zamudio, J.; Pineda, J.; Podio, L.; Rimola, A.; Segura Cox, D.; Sims, I. R.; Taquet, V.; Testi, L.; Theulé, P.; Ugliengo, P.; Vasyunin, A. I.; Vazart, F.; Viti, S.; Witzel, A.; Agence Nationale de la Recherche (ANR); Spanish FEDER; Russian Science Foundation (RSF); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Al Edhari, A. J. [0000-0003-4089-841X]; Rimola, A. [0000-0002-9637-4554]; Balucani, N. [0000-0001-5121-5683]; Ceccarelli, C. [0000-0001-9664-6292]; De Oliveira Alves, F. [0000-0002-7945-064X]; Pineda, J. E. [0000-0002-3972-1978]; Segura Cox, D. [0000-0003-3172-6763]; Bachiller, R. [0000-0002-5331-5386]; Fontani, F. [0000-0003-0348-3418]; Sakai, N. [0000-0002-3297-4497]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Aims. The Seeds Of Life In Space IRAM/NOEMA large program aims at studying a set of crucial complex organic molecules in a sample of sources with a well-known physical structure that covers the various phases of solar-type star formation. One representative object of the transition from the prestellar core to the protostar phases has been observed toward the very low luminosity object (VeLLO) L1521F. This type of source is important to study to link prestellar cores and Class 0 sources and also to constrain the chemical evolution during the process of star formation. Methods. Two frequency windows (81.6–82.6 GHz and 96.65–97.65 GHz) were used to observe the emission from several complex organics toward the L1521F VeLLO. These setups cover transitions of ketene (H2CCO), propyne (CH3CCH), formamide (NH2CHO), methoxy (CH3O), methanol (CH3OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3). Results. Only two transitions of methanol (A+, E2) have been detected in the narrow window centered at 96.7 GHz (with an upper limit on E1) in a very compact emission blob (~7′′ corresponding to ~1000 au) toward the northeast of the L1521F protostar. The CS 2–1 transition is also detected within the WideX bandwidth. Consistently with what has been found in prestellar cores, the methanol emission appears ~1000 au away from the dust peak. The location of the methanol blob coincides with one of the filaments that have previously been reported in the literature. The excitation temperature of the gas inferred from methanol is (10 ± 2) K, while the H2 gas density (estimated from the detected CS 2–1 emission and previous CS 5–4 ALMA observations) is a factor >25 higher than the density in the surrounding environment (n(H2) ≥ 107 cm−3). Conclusions. Based on its compactness, low excitation temperature, and high gas density, we suggest that the methanol emission detected with NOEMA is (i) either a cold and dense shock-induced blob that formed recently (≤ a few hundred years) by infalling gas or (ii) a cold and dense fragment that may just have been formed as a result of the intense gas dynamics within the L1521F VeLLO system.Publicación Acceso Abierto Singly and doubly deuterated formaldehyde in massive star-forming regions(EDP Sciences, 2021-09-07) Zahorecz, S.; Jiménez Serra, I.; Testi, L.; Immer, K.; Fontani, F.; Caselli, P.; Wang, K.; Onishi, T.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China (NKRDPC); Zahorecz, S. [0000-0001-6149-1278]Context. Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth. Aims. In this paper, we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer. Methods. Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the J = 3 →2 rotational lines of HDCO and D2CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H2CO emission and to give an estimate of the deuteration fractions HDCO/H2CO and D2CO/HDCO at scales of ~6″ (0.04–0.15 pc at the distance of our targets). Results. Our observations show that singly and doubly deuterated H2CO are detected towards high-mass protostellar objects (HMPOs) and ultracompact H II regions (UC H II regions), and the deuteration fraction of H2CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UC H II), from ~0.13 to ~0.01. We have not detected HDCO and D2CO emission from the youngest sources (i.e. high-mass starless cores or HMSCs). Conclusions. Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with the evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.Publicación Acceso Abierto The GUAPOS project: G31.41+0.31 Unbiased ALMA sPectral Observational Survey I. Isomers of C2H4O2(EDP Sciences, 2020-12-02) Mininni, C.; Beltrán, M. T.; Rivilla, V. M.; Sánchez Monge, A.; Fontani, F.; Möller, T.; Cesaroni, R.; Schilke, P.; Viti, S.; Jiménez Serra, I.; Colzi, L.; Lorenzani, A.; Testi, L.; Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); Agencia Estatal de Investigación (AEI); European Research Council (ERC); Mininni, C. [0000-0002-2974-4703]; Beltrán Sorolla, M. T. [0000-0003-3315-5626]; Rivilla, V. M. [0000-0002-2887-5859]; Sánchez Monge, A. [0000-0002-3078-9482]; Fontani, F. [0000-0003-0348-3418]; Möller, T. [0000-0002-9277-8025]; Cesaroni, R. [0000-0002-2430-5103]; Schilke, P. [0000-0003-2141-5689]; Viti, S. [0000-0001-8504-8844]; Jiménez Serra, I. [0000-0003-4493-8714]; Colzi, L. [0000-0001-8064-6394]; Lorenzani, A. [0000-0002-4685-3434]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. One of the goals of astrochemistry is to understand the degree of chemical complexity that can be reached in star-forming regions, along with the identification of precursors of the building blocks of life in the interstellar medium. To answer such questions, unbiased spectral surveys with large bandwidth and high spectral resolution are needed, in particular, to resolve line blending in chemically rich sources and identify each molecule (especially for complex organic molecules). These kinds of observations have already been successfully carried out, primarily towards the Galactic Center, a region that shows peculiar environmental conditions. Aims. We present an unbiased spectral survey of one of the most chemically rich hot molecular cores located outside the Galactic Center, in the high-mass star-forming region G31.41+0.31. The aim of this 3mm spectral survey is to identify and characterize the physical parameters of the gas emission in different molecular species, focusing on complex organic molecules. In this first paper, we present the survey and discuss the detection and relative abundances of the three isomers of C2H4O2: methyl formate, glycolaldehyde, and acetic acid. Methods. Observations were carried out with the ALMA interferometer, covering all of band 3 from 84 to 116 GHz (~32 GHz bandwidth) with an angular resolution of 1.2′′ × 1.2′′ (~ 4400 au × 4400 au) and a spectral resolution of ~0.488 MHz (~1.3−1.7 km s−1). The transitions of the three molecules have been analyzed with the software XCLASS to determine the physical parameters of the emitted gas. Results. All three isomers were detected with abundances of (2 ± 0.6) × 10−7, (4.3−8) × 10−8, and (5.0 ± 1.4) × 10−9 for methyl formate, acetic acid, and glycolaldehyde, respectively. Methyl formate and acetic acid abundances are the highest detected up to now, if compared to sources in the literature. The size of the emission varies among the three isomers with acetic acid showing the most compact emission while methyl formate exhibits the most extended emission. Different chemical pathways, involving both grain-surface chemistry and cold or hot gas-phase reactions, have been proposed for the formation of these molecules, but the small number of detections, especially of acetic acid and glycolaldehyde, have made it very difficult to confirm or discard the predictions of the models. The comparison with chemical models in literature suggests the necessity of grain-surface routes for the formation of methyl formate in G31, while for glycolaldehyde both scenarios could be feasible. The proposed grain-surface reaction for acetic acid is not capable of reproducing the observed abundance in this work, while the gas-phase scenario should be further tested, given the large uncertainties involved.Publicación Acceso Abierto Toward the RNA-World in the Interstellar Medium—Detection of Urea and Search of 2-Amino-oxazole and Simple Sugars(Mary Ann Liebert Publishers, 2020-09-15) Jiménez Serra, I.; Martín Pintado, J.; Rivilla, V. M.; Rodríguez Almeida, L. F.; Alonso Alonso, E. R.; Zeng, S.; Cocinero, E. J.; Martín, S.; Requeña Torres, M.; Martín Doménech, R.; Testi, L.; Gobierno Vasco; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Cocinero, E. J. [0000-0001-7632-3728]; Martín Doménech, R. [0000-0001-6496-9791]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737In the past decade, astrochemistry has witnessed an impressive increase in the number of detections of complex organic molecules. Some of these species are of prebiotic interest such as glycolaldehyde, the simplest sugar, or aminoacetonitrile, a possible precursor of glycine. Recently, we have reported the detection of two new nitrogen-bearing complex organics, glycolonitrile and Z-cyanomethanimine, known to be intermediate species in the formation process of ribonucleotides within theories of a primordial RNA-world for the origin of life. In this study, we present deep and high-sensitivity observations toward two of the most chemically rich sources in the galaxy: a giant molecular cloud in the center of the Milky Way (G + 0.693-0.027) and a proto-Sun (IRAS16293-2422 B). Our aim is to explore whether the key precursors considered to drive the primordial RNA-world chemistry are also found in space. Our high-sensitivity observations reveal that urea is present in G + 0.693-0.027 with an abundance of similar to 5 x 10(-11). This is the first detection of this prebiotic species outside a star-forming region. Urea remains undetected toward the proto-Sun IRAS16293-2422 B (upper limit to its abundance of <= 2 x 10(-11)). Other precursors of the RNA-world chemical scheme such as glycolaldehyde or cyanamide are abundant in space, but key prebiotic species such as 2-amino-oxazole, glyceraldehyde, or dihydroxyacetone are not detected in either source. Future more sensitive observations targeting the brightest transitions of these species will be needed to disentangle whether these large prebiotic organics are certainly present in space.