Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Giustini, M."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 2 de 2
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    A global view of the inner accretion and ejection flow around super massive black holes Radiation-driven accretion disk winds in a physical context
    (EDP Sciences, 2019-09-26) Giustini, M.; Proga, D.; Ministerio de Economía y Competitividad (MINECO); National Aeronautics and Space Administration (NASA); Giustini, M. [0000-0002-1329-658X]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Context. Understanding the physics and geometry of accretion and ejection around super massive black holes (SMBHs) is important to understand the evolution of active galactic nuclei (AGN) and therefore of the large scale structures of the Universe. Aims. We aim at providing a simple, coherent, and global view of the sub-parsec accretion and ejection flow in AGN with varying Eddington ratio, ṁ, and black hole mass, MBH. Methods. We made use of theoretical insights, results of numerical simulations, as well as UV and X-ray observations to review the inner regions of AGN by including different accretion and ejection modes, with special emphasis on the role of radiation in driving powerful accretion disk winds from the inner regions around the central SMBH. Results. We propose five ṁ regimes where the physics of the inner accretion and ejection flow around SMBHs is expected to change, and that correspond observationally to quiescent and inactive galaxies; low luminosity AGN (LLAGN); Seyferts and mini-broad absorption line quasars (mini-BAL QSOs); narrow line Seyfert 1 galaxies (NLS1s) and broad absorption line quasars (BAL QSOs); and super-Eddington sources. We include in this scenario radiation-driven disk winds, which are strong in the high ṁ, large MBH regime, and possibly present but likely weak in the moderate ṁ, small MBH regime. Conclusions. A great diversity of the accretion/ejection flows in AGN can be explained to a good degree by varying just two fundamental properties: the Eddington ratio ṁ and the black hole mass MBH, and by the inclusion of accretion disk winds that can naturally be launched by the radiation emitted from luminous accretion disks.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    Rapid late-time X-ray brightening of the tidal disruption event OGLE16aaa
    (EDP Sciences, 2020-07-16) Kajava, J. J. E.; Giustini, M.; Saxton, R. D.; Miniutti, G.; Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Kajava, J. J. E. [0000-0002-3010-8333]; Giustini, M. [0000-0002-1329-658X]; Unidad de Excelencia Científica María de Maeztu del Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    Stars that pass too close to a super-massive black hole may be disrupted by strong tidal forces. OGLE16aaa is one such tidal disruption event (TDE) which rapidly brightened and peaked in the optical/UV bands in early 2016 and subsequently decayed over the rest of the year. OGLE16aaa was detected in an XMM-Newton X-ray observation on June 9, 2016 with a flux slightly below the Swift/XRT upper limits obtained during the optical light curve peak. Between June 16–21, 2016, Swift/XRT also detected OGLE16aaa and based on the stacked spectrum, we could infer that the X-ray luminosity had jumped up by more than a factor of ten in just one week. No brightening signal was seen in the simultaneous optical/UV data to cause the X-ray luminosity to exceed the optical/UV one. A further XMM-Newton observation on November 30, 2016 showed that almost a year after the optical/UV peak, the X-ray emission was still at an elevated level, while the optical/UV flux decay had already leveled off to values comparable to those of the host galaxy. In all X-ray observations, the spectra were nicely modeled with a 50–70 eV thermal component with no intrinsic absorption, with a weak X-ray tail seen only in the November 30 XMM-Newton observation. The late-time X-ray behavior of OGLE16aaa strongly resembles the tidal disruption events ASASSN-15oi and AT2019azh. We were able to pinpoint the time delay between the initial optical TDE onset and the X-ray brightening to 182 ± 5 days, which may possibly represent the timescale between the initial circularization of the disrupted star around the super-massive black hole and the subsequent delayed accretion. Alternatively, the delayed X-ray brightening could be related to a rapid clearing of a thick envelope that covers the central X-ray engine during the first six months.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias