Examinando por Autor "Mathanlal, Thasshwin"
Mostrando 1 - 8 de 8
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto ATMO-vent: An adapted breathing atmosphere for COVID-19 patients(Elsevier BV, 2020-09-26) Mathanlal, Thasshwin; Nazarious, Miracle Israel; Mantas Nakhai, R.; Zorzano, María Paz; Luleå University of Technology (LTU); Mathanlal, T. [0000-0003-2691-3855]; Israel Nazoriuos, M. [0000-0002-7148-8803]; Mantas Nakhai, R. [0000-0002-4474-9983]; Zorzano, M. P. [0000-0002-4492-9650]; Martín Torres, J. [0000-0001-6479-2236]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19), has been one of the most significant challenges to humankind in centuries. The extremely contagious nature of the SARS-CoV-2 virus has put forth an immense pressure on the health sector. In order to mitigate the stress on the healthcare systems especially to battle the crisis of mechanical ventilators, we have designed a modular, and robust DIY ventilator, ATMO-Vent (Atmospheric Mixture Optimization Ventilator) which can be fully mounted within two days by two operators. The ATMO-Vent has been designed using low-cost, robust, Commercial Off The Shelf (COTS) components, with many features comparable to a full-fledged ventilator. ATMO-Vent has been designed based on the United Kingdom Medicines & Healthcare products Regulatory Agency (UK-MHRA) guidelines for Rapidly Manufactured Ventilator System (RMVS), yet is scalable to the specific requirements of different countries. ATMO-Vent is capable of adjusting the Fraction of Inspiratory Oxygen (FiO2) levels, Tidal Volume (TV), frequency of breaths, Inspiratory/Expiratory ratio (I/E), Peak Inspiratory Pressure (PIP) and Positive End-Expiratory Pressure (PEEP). ATMO-Vent can operate in two modes – Continuous Mandatory Ventilation (CMV) using Volume-Controlled Ventilation (VCV) and in Assisted Control (AC) mode with pressure triggered by the patient. ATMO-Vent has undergone rigorous testing and qualifies under Class B Electric and Magnetic Compatibility (EMC) requirements of EN 55,011 CISPR 11 standards.Publicación Acceso Abierto Implementing bioburden reduction and control on the deliquescent hydrogel of the HABIT/ExoMars 2022 instrument.(Elsevier BV, 2020-04-21) Mathanlal, Thasshwin; Nazarious, Miracle Israel; Vakkada Ramachandran, A.; Zorzano, María Paz; Martín Torres, Javier; Rettberg, P.; Rettberg, P. [0000-0003-4439-2395]; Zorzano, M. P. [0000-0002-4492-9650]; Martín Torres, J. [0000-0001-6479-2236]; Vakkada Ramachandran, A. [0000-0003-0499-6370]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The HabitAbility: Brines, Irradiation and Temperature (HABIT) instrument will be part of the ExoMars 2022 mission (ESA/Roscosmos) and will be the first European In-situ Resource Utilization (ISRU) instrument capable of producing liquid water on Mars. HABIT is composed by two modules: Environmental Package (EnvPack) and Brine Observation Transition To Liquid Experiment (BOTTLE). EnvPack will help to study the current habitability conditions on Mars investigating the air and surface thermal ranges and Ultraviolet (UV) irradiance; and BOTTLE is a container with four independent vessels housing deliquescent salts, which are known to be present on Mars, where the liquid water will be produced after deliquescence. In order to prevent capillarity of deliquescent or hydrated salts, a mixture of deliquescent salts with Super Absorbent Polymer (SAP) based on polyacrylamide is utilized. This mixture has deliquescent and hydrogel properties and can be reused by applying a thermal cycle, complying thus with the purpose of the instrument. A High Efficiency Particulate Air (HEPA) grade filter made of polytetrafluroethylene (PTFE) porous membrane sandwiched between spunbounded nonwoven fabric stands as a physical barrier allowing interaction between the gaseous molecules of the Martian atmosphere and the salt mixtures, and at the same time preventing the passage of any potential biological contamination from the cells to the outside or vice-versa. In addition to the physical barrier, a strict bioburden reduction and analysis procedure is applied to the hardware and the contained salt mixtures adhering to the European Cooperation for Space Standardization protocol of microbial examination of flight hardware (ECSS-Q-ST-70-55C). The deliquescent salts and the SAP products need to be properly treated independently to adhere to the planetary protection protocols. In this manuscript, we describe the bioburden reduction process utilized to sterilize the salt mixtures in BOTTLE and the assays adopted to validate the sterilization. We also describe the construction of a low-cost, portable ISO 7 cleanroom tent, exclusively designed for planetary protection tests. The sterilization process involves Dry Heat Microbial Reduction (DHMR) of the deliquescent salts and the SAP mixtures. The performance of SAP after DHMR is validated to ensure its working efficiency after sterilization. A slightly modified version of the standard swab assay is used in the validation process and a comparison is made between samples exposed to a thermal shock treatment and those without thermal shock, to determine the best assay to be applied for future space hardware utilizing such salt mixtures for planetary investigation and In-Situ Resource Utilization (ISRU). The demonstration of the compatibility of these products with the processes commonly required for space applications has implications for the future exploration of Mars.Publicación Acceso Abierto PACKMAN – A portable instrument to investigate space weather(Elsevier BV, 2021-04-12) Mathanlal, Thasshwin; Vakkada Ramachandran, A.; Zorzano, María Paz; Martín Torres, Javier; Swedish Space Corporation (SSC); Agencia Estatal de Investigación (AEI); 0000-0002-4492-9650; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737PACKMAN (PArticle Counter k-index Magnetic ANomaly) is an autonomous, light and robust space weather instrument for operation within the subsurface, surface and atmosphere (as payload in stratospheric balloons) of the Earth. It has been designed using Commercial Off-The-Shelf (COTS) components to reduce the cost of each unit and to allow to have multiple units monitoring simultaneously at different sites and also incorporate an open-access citizen science approach. The hardware-core of each PACKMAN units, weights around 600 g and consumes about 500 mA of current at 12 V. PACKMAN has been deployed at multiple latitudes and altitudes ranging from stratospheric heights (corroborating its TRL8 maturity) to subsurface depths of around 1 km. The data from PACKMAN have been compared with the state-of-the-art ground-based observatories, and satellites and scientific observations have been documented. A 3-D network of PACKMAN units operating continuously around the globe, from the subsurface to the stratosphere, would help to improve the understanding of the space weather phenomena, and its implications on the climate and infrastructures. PACKMAN is also an excellent tool for education and outreach. This article outlines the building instructions of two types of PACKMAN units: PACKMAN-S for ground-based measurements and PACKMAN-B for stratospheric measurements aboard high-altitude balloons.Publicación Acceso Abierto Pressure Optimized PowEred Respirator (PROPER): A miniaturized wearable cleanroom and biosafety system for aerially transmitted viral infections such as COVID-19(Elsevier BV, 2020-10-06) Nazarious, Miracle Israel; Mathanlal, Thasshwin; Zorzano, María Paz; Martín Torres, Javier; Agencia Estatal de Investigación (AEI); Nazarious, M. I. [0000-0002-7148-8803]; Mathanlal, T. [0000-0003-2691-3855]; Zorzano, M. P. [0000-0002-4492-9650]; Martín Torres, J. [0000-0001-6479-2236]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The supply of Personal Protective Equipment (PPE) in hospitals to keep the Health Care Professionals (HCP) safe taking care of patients may be limited, especially during the outbreak of a new disease. In particular, the face and body protective equipment is critical to prevent the wearer from exposure to pathogenic biological airborne particulates. This situation has been now observed worldwide during the onset of the COVID-19 pandemic. As concern over shortages of PPE at hospitals grows, we share with the public and makers’ community the Pressure Optimized PowEred Respirator (PROPER) equipment, made out of COTS components. It is functionally equivalent to a Powered Air Purifying Respirator (PAPR). PROPER, a hood-based system which uses open source and easily accessible components is low-cost, relatively passive in terms of energy consumption and mechanisms, and easy and fast to 3D print, build and assemble. We have adapted our experience on building clean room environments and qualifying the bioburden of space instruments to this solution, which is in essence a miniaturized, personal, wearable cleanroom. PROPER would be able to offer better protection than an N95 respirator mask, mainly because it is insensitive to seal fit and it shields the eyes as well. The PROPER SMS fabric is designed for single-use and not intended for reuse, as they may start to tear and fail but the rest of the parts can be disinfected and reused. We provide a set of guidelines to build a low-cost 3D printed solution for an effective PAPR system and describe the procedures to validate it to comply with the biosafety level 3 requirements. We have validated the prototype of PROPER unit for air flow, ISO class cleanliness level, oxygen and carbon-dioxide gas concentrations during exhalation, and present here these results for illustration. We demonstrate that the area inside the hood is more than 200 times cleaner than the external ambient without the operator and more than 175 times with the operator and in an aerosol exposed environment. We also include the procedure to clean and disinfect the equipment for reuse. PROPER may be a useful addition to provide protection to HCPs against the SARS-CoV-2 virus or other potential future viral diseases that are transmitted aerially.Publicación Acceso Abierto Space Environmental Chamber for Planetary Studies(Multidisciplinary Digital Publishing Institute, 2020-07-18) Ramachandran, Abhilash Vakkada; Nazarious, Miracle Israel; Mathanlal, Thasshwin; Zorzano, María Paz; Martín Torres, Javier; 0000-0003-0499-6370; 0000-0002-7148-8803; 0000-0002-4492-9650; 0000-0001-6479-2236; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We describe a versatile simulation chamber that operates under representative space conditions (pressures from < 10-5 mbar to ambient and temperatures from 163 to 423 K), the SpaceQ chamber. This chamber allows to test instrumentation, procedures, and materials and evaluate their performance when exposed to outgassing, thermal vacuum, low temperatures, baking, dry heat microbial reduction (DHMR) sterilization protocols, and water. The SpaceQ is a cubical stainless-steel chamber of 27,000 cm3 with a door of aluminum. The chamber has a table which can be cooled using liquid nitrogen. The chamber walls can be heated (for outgassing, thermal vacuum, or dry heat applications) using an outer jacket. The chamber walls include two viewports and 12 utility ports (KF, CF, and Swagelok connectors). It has sensors for temperature, relative humidity, and pressure, a UV-VIS-NIR spectrometer, a UV irradiation lamp that operates within the chamber as well as a stainless-steel syringe for water vapor injection, and USB, DB-25 ports to read the data from the instruments while being tested inside. This facility has been specifically designed for investigating the effect of water on the Martian surface. The core novelties of this chamber are: (1) its ability to simulate the Martian near-surface water cycle by injecting water multiple times into the chamber through a syringe which allows to control and monitor precisely the initial relative humidity inside with a sensor that can operate from vacuum to Martian pressures and (2) the availability of a high-intensity UV lamp, operating from vacuum to Martian pressures, within the chamber, which can be used to test material curation, the role of the production of atmospheric radicals, and the degradation of certain products like polymers and organics. For illustration, here we present some applications of the SpaceQ chamber at simulated Martian conditions with and without atmospheric water to (i) calibrate the ground temperature sensor of the Engineering Qualification Model of HABIT (HabitAbility: Brines, Irradiation and Temperature) instrument, which is a part of ExoMars 2022 mission. These tests demonstrate that the overall accuracy of the temperature retrieval at a temperature between -50 and 10 °C is within 1.3 °C and (ii) investigate the curation of composite materials of Martian soil simulant and binders, with added water, under Martian surface conditions under dry and humid conditions. Our studies have demonstrated that the regolith, when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight.Publicación Acceso Abierto Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part I (Rover development).(Cambridge University Press, 2020-04-05) Mathanlal, Thasshwin; Bhardwaj, A.; Vakkada Ramachandran, A.; Zorzano, María Paz; Martín Torres, Javier; Cockell, C. S.; Edwards, T.; Martín Torres, J. [0000-0001-6479-2236]; Zorzano, M. P. [0000-0002-4492-9650]; Bhardwaj, A. [0000-0002-2502-6384]; Vakkada Ramachandran, A. [0000-0003-0499-6370]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Autonomous exploration requires the use of movable platforms that carry a payload of instruments with a certain level of autonomy and communication with the operators. This is particularly challenging in subsurface environments, which may be more dangerous for human access and where communication with the surface is limited. Subsurface robotic exploration, which has been to date very limited, is interesting not only for science but also for cost-effective industrial exploitation of resources and safety assessments in mines. Furthermore, it has a direct application to exploration of extra-terrestrial subsurface environments of astrobiological and geological significance such as caves, lava tubes, impact or volcanic craters and subglacial conduits, for deriving in-situ mineralogical resources and establishing preliminary settlements. However, the technological solutions are generally tailor-made and are therefore considered as costly, fragile and environment-specific, further hindering their extensive and effective applications. To demonstrate the advantages of rover exploration for a broad-community, we have developed KORE (KOmpact Rover for Exploration); a low-cost, re-usable, rover multi-purpose platform. The rover platform has been developed as a technological demonstration for extra-terrestrial subsurface exploration and terrestrial mining operations pertaining to geomorphological mapping, environmental monitoring, gas leak detections and search and rescue operations in case of an accident. The present paper, the first part of a series of two, focuses on describing the development of a robust rover platform to perform dedicated geomorphological, astrobiological and mining tasks. KORE was further tested in the Mine Analogue Research 6 (MINAR6) campaign during September 2018 in the Boulby mine (UK), the second deepest potash mine in Europe at a subsurface depth of 1.1 km, the results of which will be presented in the second paper of this series. KORE is a large, semi-autonomous rover weighing 160 kg with L x W x H dimensions 1.2 m x 0.8 m x 1 m and a payload carrying capacity of 100 kg using 800 W traction power that can power to a maximum speed of 8.4 km h(-1). The rover can be easily dismantled in three parts facilitating its transportation to any chosen site of exploration. Presently, the main scientific payloads on KORE are: (1) a three-dimensional mapping camera, (2) a methane detection system, (3) an environmental station capable of monitoring temperature, relative humidity, pressure and gases such as NO2, SO2, H2S, formaldehyde, CO, CO2, O-3, O(2,)volatile organic compounds and particulates and (4) a robotic arm. Moreover, the design of the rover allows for integration of more sensors as per the scientific requirements in future expeditions. At the MINAR6 campaign, the technical readiness of KORE was demonstrated during 6 days of scientific research in the mine, with a total of 22 h of operation.Publicación Acceso Abierto Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part II (Results and Discussion)(Cambridge University Press, 2021-01-07) Mathanlal, Thasshwin; Bhardwaj, A.; Vakkada Ramachandran, A.; Zorzano, María Paz; Martín Torres, Javier; Cockell, C. S.; Zorzano, M. P. [0000-0002-4492-9650]; Bhardwaj, A. [0000-0002-2502-6384]; Martín Torres, J. [0000-0001-6479-2236]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Geomorphological studies of the hidden and protected subsurface environments are crucial to obtain a greater insight into the evolution of planetary landforms, hydrology, climate, geology and mineralogy. From an astrobiological point of view subsurface environments are of interest for their potential habitability as they are local environments that are partially or fully shielded from the high levels of space and solar radiation. Furthermore, in the case of Mars, there is an increasing interest in searching for the presence of past or extant life in its subsurface. These applications make it mandatory to investigate equipment and instrumentation that allow for the study of subsurface geomorphology, as well as organic chemical biomarkers, such as biomolecules, carbon, nitrogen and sulphur isotopes, and other biologically significant minerals and gases. Mines on Earth can be used as analogues to investigate the geomorphology of Martian subsurface environments and perform astrobiology studies. With that goal, we have developed a low-cost, robust, remotely operable subsurface rover called KORE (KOmpact Rover for Exploration). This work illustrates the studies of a terrestrial analogue for the exploration of Mars using KORE during the Mine Analogue Research 6 (MINAR 6) campaign with the low-cost 3D mapping technology InXSpace 3D (In situ 3D mapping tool eXploration of space 3D). InXSpace 3D utilizes an RGB-D camera that captures depth information in addition to the RGB data of an image, operating based on the structured light principle capable of providing depth information in mm scale resolution at sub 3 m mapping range. InXSpace 3D is used to capture point clouds of natural and artificial features, thereby obtaining information about geologically relevant structures and also to incorporate them in earth mining safety. We tested two of the dense simultaneous localization and mapping (SLAM) algorithms: Kintinuous and Real-Time Appearance-Based Mapping (RTAB-Map) to check the performance of InXSpace 3D in a dark mine environment. Also, the air accumulation of volatiles such as methane and formaldehyde due to thermogenic and mining process was measured with the environmental station payload on the rover platform, which caters to both astrobiological significance and mine safety. The main conclusions of this work are: (1) a comparison made between the RTAB-Map algorithm and Kintinuous algorithm showed the superiority of Kintinuous algorithm in providing better 3D reconstruction; although RTAB-Map algorithm captured more points than the Kintinuous algorithm in the dark mine environment; (2) a comparison of point cloud images captured with and without lighting conditions had a negligible effect on the surface density of the point clouds; (3) close-range imaging of the polygonal features occurring on the halite walls using InXSpace 3D provided mm-scale resolution to enable further characterization; (4) heuristic algorithms to quickly post-process the 3D point cloud data provided encouraging results for preliminary analyses; (5) we successfully demonstrated the application of KORE to mine safety; and (6) the multi-sensors platform on KORE successfully monitored the accumulated volatiles in the mine atmosphere during its operation. The findings obtained during this KORE campaign could be incorporated in designing and planning future subsurface rover explorations to potential planetary bodies such as Mars with synergistic applications to subsurface environments in mines on Earth.Publicación Acceso Abierto The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform(Elsevier, 2021-03-17) Martín Torres, Javier; Zorzano, María Paz; Soria Salinas, Álvaro; Israel Nazarious, Miracle; Konatham, Samuel; Mathanlal, Thasshwin; Vakkada Ramachandran, A.; Ramírez Luque, Juan Antonio; Mantas Nakhai, R.; 0000-0001-6479-2236; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The HABIT (HabitAbility: Brine Irradiation and Temperature) instrument is a European payload of the ExoMars 2022 Surface Platform Kazachok that will characterize the present-day habitability at its landing place in Oxia Planum, Mars. HABIT consists of two modules: (i) EnvPack (Environmental Package) that monitors the thermal environment (air and ground), the incident ultraviolet radiation, the near-surface winds and the atmospheric dust cycle; and (ii) BOTTLE (Brine Observation Transition To Liquid Experiment), an In-situ Resource Utilization instrument to produce liquid water for future Mars exploration. BOTTLE will be used also to investigate the electrical conductivity properties of the martian atmosphere, the present-day atmospheric-ground water cycle and to evaluate if liquid water can exist on Mars in the form of brines, and for how long. These variables measured by HABIT are critical to determine the present and future habitability of the martian surface. In this paper, we describe in detail the HABIT instrument and sensors, together with the calibration of its Flight Model (FM) and the Engineering Qualification Model (EQM) versions. The EnvPack module has heritage from previous missions operating on the surface of Mars, and the environmental observations of its sensors will be directly comparable to those delivered by those missions. HABIT can provide information of the local temperature with ±0.2 °C accuracy, local winds with ±0.3 m/s, surface brightness temperature with ±0.8 °C, incident UV irradiance with 10% error of its absolute value in the UV-A, UV-B, UV-C ranges, as well as in the total UV-ABC range, and two additional wavebands, dedicated to ozone absorption. The UV observations can be used to derive the total opacity column and thus monitor the dust and ozone cycles. BOTTLE can demonstrate the hydration state of a set of four deliquescent salts, which have been found on Mars (calcium chloride, ferric sulphate, magnesium perchlorate and sodium perchlorate) by monitoring their electric conductivity (EC). The EC of the air and the dry salts under Earth ambient, clean room conditions is of the order of 0.1 μScm. We have simulated HABIT operations, within an environmental chamber, under martian conditions similar to those expected at Oxia Planum. For dry, CO atmospheric conditions at martian pressures, the air EC can be as low as 10 μScm, however it increases with the relative humidity (RH) percentage. The laboratory experiments show that after an increase from 0 to 60% RH within a few hours, the EC of the air increased up to 10 μScm, magnesium perchlorate hydrated and reached values of 10 μScm1, whereas calcium chloride deliquesced forming a liquid state with EC of 10 μScm. HABIT will operate with a regular cadence, through day and night. The Electronic Unit (EU) is protected with a heater that is activated when its temperature is below −33 °C and disabled if the temperature of the surface platform rises above −30 °C. Additionally, the heaters of the BOTTLE unit can be activated to dehydrate the salts and reset the experiment. HABIT weighs only 918 g. Its power consumption depends on the operation mode and internal temperature, and it varies between 0.7 W, for nominal operation, and 13.1 W (when heaters are turned on at full intensity). HABIT has a baseline data rate of 1.5 MB/sol. In addition to providing critical environmental observations, this light and robust instrument, will be the first demonstrator of a water capturing system on the surface of Mars, and the first European In-Situ Resource Utilization in the surface of another planet.