Examinando por Autor "Rayo Pizarroso, P."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Characterization of HCN-derived thermal polymer: Implications for chemical evolution(Multidisciplinary Digital Publishing Institute (MDPI), 2020-08-11) Villafañe Barajas, S. A.; Ruiz Bermejo, Marta; Rayo Pizarroso, P.; Colín García, M.; Consejo Nacional de Ciencia y Tecnología (CONACYT); Colín García, M. https://orcid.org/0000-0002-9193-1761; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Hydrogen cyanide (HCN)-derived polymers have been recognized as sources of relevant organic molecules in prebiotic chemistry and material sciences. However, there are considerable gaps in the knowledge regarding the polymeric nature, the physicochemical properties, and the chemical pathways along polymer synthesis. HCN might have played an important role in prebiotic hydrothermal environments; however, only few experiments use cyanide species considering hydrothermal conditions. In this work, we synthesized an HCN-derived thermal polymer simulating an alkaline hydrothermal environment (i.e., HCN (l) 0.15 M, 50 h, 100 degrees C, pH approximately 10) and characterized its chemical structure, thermal behavior, and the hydrolysis effect. Elemental analysis and infrared spectroscopy suggest an important oxidation degree. The thermal behavior indicates that the polymer is more stable compared to other HCN-derived polymers. The mass spectrometric thermal analysis showed the gradual release of several volatile compounds along different thermal steps. The results suggest a complicate macrostructure formed by amide and hydroxyl groups, which are joined to the main reticular chain with conjugated bonds (C=O, N=O, -O-C=N). The hydrolysis treatment showed the pH conditions for the releasing of organics. The study of the synthesis of HCN-derived thermal polymers under feasible primitive hydrothermal conditions is relevant for considering hydrothermal vents as niches of chemical evolution on early Earth.Publicación Acceso Abierto Prebiotic synthesis of noncanonical nucleobases under plausible alkaline hydrothermal conditions(Springer Nature, 2022-09-07) Pérez Fernández, Cristina; Vega, Jorge; Rayo Pizarroso, P.; Mateo Martí, Eva; Ruiz Bermejo, Marta; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Ministerio de Ciencia, Innovación y Universidades (MICIN); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Herein, the potential of alkaline hydrothermal environments for the synthesis of possible ancestral pre-RNA nucleobases using cyanide as a primary source of carbon and nitrogen is described. Water cyanide polymerizations were assisted by microwave radiation to obtain high temperature and a relatively high pressure (MWR, 180 °C, 15 bar) and were also carried out using a conventional thermal system (CTS, 80 °C, 1 bar) to simulate subaerial and aerial hydrothermal conditions, respectively, on the early Earth. For these syntheses, the initial concentration of cyanide and the diffusion effects were studied. In addition, it is well known that hydrolysis conditions are directly related to the amount and diversity of organic molecules released from cyanide polymers. Thus, as a first step, we studied the effect of several hydrolysis procedures, generally used in prebiotic chemistry, on some of the potential pre-RNA nucleobases of interest, together with some of their isomers and/or deamination products, also presumably formed in these complex reactions. The results show that the alkaline hydrothermal scenarios with a relatively constant pH are good geological scenarios for the generation of noncanonical nucleobases using cyanide as a prebiotic precursor.