Examinando por Autor "Azua Bustos, A."
Mostrando 1 - 7 de 7
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Can Halophilic and Psychrophilic Microorganisms Modify the Freezing/Melting Curve of Cold Salty Solutions? Implications for Mars Habitability(Mary Ann Liebert Publishers, 2020-09-15) García Descalzo, L.; Gil Lozano, C.; Muñoz Iglesias, V.; Prieto Ballesteros, O.; Azua Bustos, A.; Fairén, Alberto G.; European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); European Commission (EC); Agencia Estatal de Investigación (AEI); García Descalzo, L. [0000-0002-0083-6786]; Gil Lozano, C. [0000-0003-3500-2850]; Muñoz Iglesias, V. [0000-0002-1159-9093]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Azua Bustos, A. [0000-0002-2278-1210]; Fairén, A. G. [0000-0002-2938-6010]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We present the hypothesis that microorganisms can change the freezing/melting curve of cold salty solutions by protein expression, as it is known that proteins can affect the liquid-to-ice transition, an ability that could be of ecological advantage for organisms on Earth and on Mars. We tested our hypothesis by identifying a suitable candidate, the well-known psycrophile and halotolerant bacteriaRhodococcussp. JG3, and analyzing its response in culture conditions that included specific hygroscopic salts relevant to Mars-that is, highly concentrated magnesium perchlorate solutions of 20 wt % and 50 wt % Mg(ClO4)(2)at both end members of the eutectic concentration (44 wt %)-and subfreezing temperatures (263 K and 253 K). Using a combination of techniques of molecular microbiology and aqueous geochemistry, we evaluated the potential roles of proteins over- or underexpressed as important players in different mechanisms for the adaptability of life to cold environments. We recorded the changes observed by micro-differential scanning calorimetry. Unfortunately,Rhodococcussp. JG3 did not show our hypothesized effect on the melting characteristics of cold Mg-perchlorate solutions. However, the question remains as to whether our novel hypothesis that halophilic/psychrophilic bacteria or archaea can alter the freezing/melting curve of salt solutions could be validated. The null result obtained after analyzing just one case lays the foundation to continue the search for proteins produced by microorganisms that thrive in very cold, high-saline solutions, which would involve testing different microorganisms with different salt components. The immediate implications for the habitability of Mars are discussed.Publicación Acceso Abierto Crystalline water in gypsum is unavailable for cyanobacteria in laboratory experiments and in natural desert endolithic habitats(National Academy of Sciences, 2020-10-22) Wierzchos, J.; Artieda, O.; Ascaso, C.; Nieto García, F.; Vítek, P.; Azua Bustos, A.; Fairén, Alberto G.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Nieto García, F. [0000-0001-6250-056X]; Wierzchos, J. [0000-0003-3084-3837]; Azua Bustos, A. [0000-0002-6590-4145]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Publicación Acceso Abierto Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits(Nature Publishing Group, 2023-02-21) Azua Bustos, A.; Fairén, A.; González Silva, C.; Prieto Ballesteros, O.; Carrizo, D.; Sánchez García, L.; Parro García, V.; Fernández Martínez, M. A.; Escudero, C.; Muñoz Iglesias, V.; Fernández Sampedro, M.; Molina, A.; García Villadangos, M.; Moreno Paz, M.; Wierzchos, J.; Ascaso, C.; Fornado, Teresa; Brucato, J. R.; Poggiali, G.; Manrique, J. A.; Veneranda, M.; López Reyes, G.; Sanz Arranz, A.; Rull, F.; Ollila, A. M.; Wiens, R. C.; Reyes Newell, Adriana; Clegg, S. M.; Millan, Maëva; Stewart Johnson, Sarah; McIntosh, Ophélie; Szopa, Cyril; Freissinet, Caroline; Sekine, Yasuhito; Fukushi, Keisuke; Morida, Koki; Inoue, Kosuke; Sakuma, Hiroshi; Rampe, E.; European Commission (EC); Ministerio de Economía y Competitividad (MINECO); Japan Society for the Promotion of Science (JSPS); Comunidad de Madrid; National Aeronautics and Space Administration (NASA); Agenzia Spaziale Italiana (ASI); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan–fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as “dark microbiome”, and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.Publicación Acceso Abierto Emendation of the Coccoid Cyanobacterial Genus Gloeocapsopsis and Description of the New Species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. Isolated From the Coastal Range of the Atacama Desert (Chile)(Extreme Microbiology, 2021-07-08) Jung, P.; Azua Bustos, A.; González Silva, C.; Mikhailyuk, T.; Zabicki, D.; Holzinger, A.; Lakatos, M.; Büdel, B.; European Research Council (ERC)The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S–23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S–23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.Publicación Acceso Abierto Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars(Nature Research Journals, 2020-11-05) Azua Bustos, A.; Fairén, Alberto G.; González Silva, C.; Carrizo, D.; Fernández Martínez, M. A.; Arenas Fajardo, C.; Fernández Sampedro, M.; Gil Lozano, C.; Sánchez García, L.; Ascaso, C.; Wierzchos, J.; Rampe, E. B.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Sánchez García, L. [0000-0002-7444-1242]; Lozano, C. G. [0000-0003-3500-2850]; Fernández Sampedro, M. [0000-0003-1932-7591]The modern Martian surface is unlikely to be habitable due to its extreme aridity among other environmental factors. This is the reason why the hyperarid core of the Atacama Desert has been studied as an analog for the habitability of Mars for more than 50 years. Here we report a layer enriched in smectites located just 30 cm below the surface of the hyperarid core of the Atacama. We discovered the clay-rich layer to be wet (a phenomenon never observed before in this region), keeping a high and constant relative humidity of 78% (aw 0.780), and completely isolated from the changing and extremely dry subaerial conditions characteristic of the Atacama. The smectite-rich layer is inhabited by at least 30 halophilic species of metabolically active bacteria and archaea, unveiling a previously unreported habitat for microbial life under the surface of the driest place on Earth. The discovery of a diverse microbial community in smectite-rich subsurface layers in the hyperarid core of the Atacama, and the collection of biosignatures we have identified within the clays, suggest that similar shallow clay deposits on Mars may contain biosignatures easily reachable by current rovers and landers.Publicación Acceso Abierto Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers(Mary Ann Liebert Publishers, 2020-10-09) Seyler, L.; Kujawinski, E. B.; Azua Bustos, A.; Lee, M. D.; Marlow, J.; Perl, S. C.; Claves, H. J.; Japan Society for the Promotion of Science (KAKENHI); European Commission (EC); European Research Council (ERC); Human Frontier Science Program (HFSP); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.Publicación Acceso Abierto The beauty and the yeast: can the microalgae Dunaliella form a borderline lichen with Hortaea werneckii?(Springer Link, 2020-07-27) Muggia, L.; Zalar, P.; Azua Bustos, A.; González Silva, C.; Grube, M.; Gunde Cimerman, N.; European Research Council (ERC); Slovenian Research Agency (ARRS); González Silva, C. [0000-0002-3917-2016]; Muggia, L. [0000-0003-0390-6169]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Lichenized fungi usually develop complex, stratified morphologies through an intricately balanced living together with their algal partners, but several species are known to form only more or less loose associations with algae. These borderline lichens are still little explored although they could inform us about early stages of lichen evolution. We studied the association of the extremely halotolerant fungus Hortaea werneckii with the alga Dunaliella atacamensis, discovered in a cave in the Atacama Desert (Chile), and with D. salina, common inhabitant of saltern brines. D. atacamensis forms small colonies, in which cells of H. werneckii can be frequently observed, while such interaction has not been observed with D. salina. As symbiotic interactions between Dunaliella and Hortaea have not been reported, we performed a series of co-cultivation experiments to inspect whether these species could interact and develop more distinct lichen-like symbiotic structures. We set up co-cultures between axenic strains of Hortaea werneckii (isolated both from Mediterranean salterns and from the Atacama cave) and isolates of D. atacamensis (from the Atacama cave) and D. salina (isolated from Mediterranean salterns). Although we used different growth media and cultivation approaches, bright field and SEM microscopy analyses did not indicate any mutual effects in these experiments. We discuss the implications for fungal algal interactions along the transition from algal exploiters to lichen symbioses.