Examinando por Autor "Zeng, S."
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Cloud–cloud collision as drivers of the chemical complexity in Galactic Centre molecular clouds.(Oxford Academics: Blackwell Publishing, 2020-07-29) Zeng, S.; Zhang, Q.; Jiménez Serra, I.; Tercero, B.; Lu, X.; Martín Pintado, J.; De Vicente, P.; Rivilla, V. M.; Li, S.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); European Commission (EC); Japan Society for the Promotion of Science (KAKENHI); De Vicente, P. [0000-0002-5902-5005]; Rivilla, V. M. [0000-0002-2887-5859]; Li, S. [0000-0003-1275-5251]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The origin of such chemical complexity, along with the small-scale physical structure and properties of G+0.693-0.03, remains a mystery. In this paper, we report the study of multiple molecules with interferometric observations in combination with single-dish data in G+0.693-0.03. Despite the lack of detection of continuum source, we find small-scale (0.2 pc) structures within this cloud. The analysis of the molecular emission of typical shock tracers such as SiO, HNCO, and CH3OH unveiled two molecular components, peaking at velocities of 57 and 75 km s(-1). They are found to be interconnected in both space and velocity. The position-velocity diagrams show features that match with the observational signatures of a cloud-cloud collision. Additionally, we detect three series of class I methanol masers known to appear in shocked gas, supporting the cloud-cloud collision scenario. From the maser emission we provide constraints on the gas kinetic temperatures (similar to 30-150 K) and H-2 densities (10(4)-10(5) cm(-2)). These properties are similar to those found for the starburst galaxy NGC 253 also using class I methanol masers, suggested to be associated with a cloud-cloud collision. We conclude that shocks driven by the possible cloud-cloud collision is likely the most important mechanism responsible for the high level of chemical complexity observed in G+0.693-0.03.Publicación Acceso Abierto Discovery in space of ethanolamine, the simplest phospholipid head group(National Academy of Sciences, 2021-06-01) Rivilla, V. M.; Jiménez Serra, I.; Martín Pintado, J.; Briones, C.; Rodríguez Almeida, L. F.; Rico Villas, F.; Tercero, B.; Zeng, S.; Colzi, L.; De Vicente, P.; Martín, S.; Requena Torres, M. A.; European Commission (EC); Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Rivilla, V. M. [0000-0002-2887-5859]; Tercero, B. [0000-0002-4782-5259]; Martín, S. [0000-0001-9281-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Cell membranes are a key element of life because they keep the genetic material and metabolic machinery together. All present cell membranes are made of phospholipids, yet the nature of the first membranes and the origin of phospholipids are still under debate. We report here the presence of ethanolamine in space, NH2CH2CH2OH, which forms the hydrophilic head of the simplest and second-most-abundant phospholipid in membranes. The molecular column density of ethanolamine in interstellar space is N = (1.51 +/- 0.07) x 1013 cm-2, implying a molecular abundance with respect to H2 of (0.9 - 1.4) x 10-10. Previous studies reported its presence in meteoritic material, but they suggested that it is synthesized in the meteorite itself by decomposition of amino acids. However, we find that the proportion of the molecule with respect to water in the interstellar medium is similar to the one found in the meteorite (10-6). These results indicate that ethanolamine forms efficiently in space and, if delivered onto early Earth, could have contributed to the assembling and early evolution of primitive membranes.Publicación Acceso Abierto Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH(The Institute of Physics (IOP), 2020-08-19) Rivilla, V. M.; Martín Pintado, J.; Jiménez Serra, I.; Martín, S.; Rodríguez Almeida, L. F.; Requeña Torres, M. A.; Rico Villas, F.; Zeng, S.; Briones, C.; European Research Council (ERC); Agencia Estatal de Investigación (AEI); Comunidad de Madrid; Briones, C. [0000-0003-2213-8353]; Martín Ruiz, S. [0000-0001-9281-2919]; Rico Villas, F. [0000-0002-5351-3497]; Rivilla, V. M. [0000-0002-2887-5859]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737One of the proposed scenarios for the origin of life is the primordial RNA world, which considers that RNA molecules were likely responsible for the storage of genetic information and the catalysis of biochemical reactions in primitive cells, before the advent of proteins and DNA. In the last decade, experiments in the field of prebiotic chemistry have shown that RNA nucleotides can be synthesized from relatively simple molecular precursors, most of which have been found in space. An important exception is hydroxylamine, NH2OH, which, despite several observational attempts, it has not been detected in space yet. Here we present the first detection of NH2OH in the interstellar medium toward the quiescent molecular cloud G+0.693-0.027 located in the Galactic Center. We have targeted the three groups of transitions from the J = 2−1, 3−2, and 4−3 rotational lines, detecting five transitions that are unblended or only slightly blended. The derived molecular abundance of NH2OH is (2.1 ± 0.9) × 10−10. From the comparison of the derived abundance of NH2OH and chemically related species, with those predicted by chemical models and measured in laboratory experiments, we favor the formation of NH2OH in the interstellar medium via hydrogenation of NO on dust grain surfaces, with possibly a contribution of ice-mantle NH3 oxidation processes. Further laboratory studies and quantum chemical calculations are needed to completely rule out the formation of NH2OH in the gas phase.Publicación Restringido Thiols in the Interstellar Medium: First Detection of HC(O)SH and Confirmation of C2H5SH(IOP Science Publishing, 2021-04-30) Rodríguez Almeida, L. F.; Jiménez Serra, I.; Rivilla, V. M.; Martín Pintado, J.; Zeng, S.; Tercero, B.; De Vicente, P.; Colzi, L.; Rico Villas, F.; Martín, S.; Requena Torres, M. A.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); European Research Council (ERC); European Commission (EC); Rodríguez Almeida, L. F. [0000-0002-9785-703X]; Jiménez Serra, I. [0000-0003-4493-8714]; Rivilla, V. M. [0000-0002-2887-5859]; Martín Pintado, J. [0000-0003-4561-3508]; Tercero, B. [0000-0002-4782-5259]; Martín, S. [0000-0001-9281-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compound toward the Galactic Center quiescent cloud G+0.693–0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~1 × 10−10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~3 × 10−10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~5 × 10−9. Abundance ratios were calculated for the three SH-bearing species and their OH analogs, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH, and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.Publicación Acceso Abierto Toward the RNA-World in the Interstellar Medium—Detection of Urea and Search of 2-Amino-oxazole and Simple Sugars(Mary Ann Liebert Publishers, 2020-09-15) Jiménez Serra, I.; Martín Pintado, J.; Rivilla, V. M.; Rodríguez Almeida, L. F.; Alonso Alonso, E. R.; Zeng, S.; Cocinero, E. J.; Martín, S.; Requeña Torres, M.; Martín Doménech, R.; Testi, L.; Gobierno Vasco; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Cocinero, E. J. [0000-0001-7632-3728]; Martín Doménech, R. [0000-0001-6496-9791]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737In the past decade, astrochemistry has witnessed an impressive increase in the number of detections of complex organic molecules. Some of these species are of prebiotic interest such as glycolaldehyde, the simplest sugar, or aminoacetonitrile, a possible precursor of glycine. Recently, we have reported the detection of two new nitrogen-bearing complex organics, glycolonitrile and Z-cyanomethanimine, known to be intermediate species in the formation process of ribonucleotides within theories of a primordial RNA-world for the origin of life. In this study, we present deep and high-sensitivity observations toward two of the most chemically rich sources in the galaxy: a giant molecular cloud in the center of the Milky Way (G + 0.693-0.027) and a proto-Sun (IRAS16293-2422 B). Our aim is to explore whether the key precursors considered to drive the primordial RNA-world chemistry are also found in space. Our high-sensitivity observations reveal that urea is present in G + 0.693-0.027 with an abundance of similar to 5 x 10(-11). This is the first detection of this prebiotic species outside a star-forming region. Urea remains undetected toward the proto-Sun IRAS16293-2422 B (upper limit to its abundance of <= 2 x 10(-11)). Other precursors of the RNA-world chemical scheme such as glycolaldehyde or cyanamide are abundant in space, but key prebiotic species such as 2-amino-oxazole, glyceraldehyde, or dihydroxyacetone are not detected in either source. Future more sensitive observations targeting the brightest transitions of these species will be needed to disentangle whether these large prebiotic organics are certainly present in space.