Examinando por Autor "Marco, A."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A comprehensive study of NGC 2345, a young open cluster with a low metallicity(EDP Sciences, 2019-11-05) Alonso Santiago, J.; Negueruela, I.; Marco, A.; Tabernero, H.; González Fernández, C.; Castro, N.; European Southern Observatory (ESO); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); European Research Council (ERC); González Fernández, C. [0000-0003-2612-0118]; Tabernero, H. [0000-0002-8087-4298]; Castro, N. [0000-0003-0521-473X]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. NGC 2345 is a young open cluster that hosts seven blue and red supergiants, low metallicity, and a high fraction of Be stars, which makes it a privileged laboratory to study stellar evolution. Aims. We aim to improve the determination of the cluster parameters and study the Be phenomenon. Our objective is also to characterise the seven evolved stars found in NGC 2345 by deriving their atmospheric parameters and chemical abundances. Methods. We performed a complete analysis combining for the first time ubvy photometry with spectroscopy as well as the Gaia Data Release 2. We obtained spectra with classification purposes for 76 stars and high-resolution spectroscopy for an in-depth analysis of the blue and red evolved stars. Results. We identify a new red supergiant and 145 B-type likely members within a radius of 18.7 ± 1.2 arcmin, which implies an initial mass, Mcl ≈ 5200 M⊙. We find a distance of 2.5 ± 0.2 kpc for NGC 2345, placing it at RGC = 10.2 ± 0.2 kpc. Isochrone fitting supports an age of 56 ± 13 Ma, implying masses around 6.5 M⊙ for the supergiants. A high fraction of Be stars (≈10%) is found. From the spectral analysis we estimate an average vrad = +58.6 ± 0.5 km s−1 and a low metallicity, [Fe/H] = −0.28 ± 0.07, for the cluster. We also determine chemical abundances for Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y, and Ba for the evolved stars. The chemical composition of the cluster is consistent with that of the Galactic thin disc. One of the K supergiants, S50, is a Li-rich star, presenting an A(Li) ≈ 2.1. An overabundance of Ba is found, supporting the enhanced s-process. Conclusions. NGC 2345 has a low metallicity for its Galactocentric distance, which is comparable to typical Large Magellanic Cloud stars. It is massive enough to serve as a test bed for theoretical evolutionary models for massive intermediate-mass stars.Publicación Acceso Abierto MONOS: Multiplicity Of Northern O-type Spectroscopic systems I. Project description and spectral classifications and visual multiplicity of previously known objects(EDP Sciences, 2019-06-05) Maíz Apellániz, J.; Trigueros Páez, E.; Negueruela, I.; Barbá, R. H.; Simón Díaz, S.; Lorenzo, J.; Sota, A.; Gamen, R. C.; Fariña, C.; Salas, J.; Caballero, J. A.; Morrell, N. I.; Pellerín, A.; Alfaro, E. J.; Herrero, A.; Arias, J. I.; Marco, A.; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Cabildo de Gran Canaria; 0000-0003-0825-3443; 0000-0001-6770-1977; 0000-0003-1952-3680; 0000-0001-5358-0932; 0000-0002-9404-6952; 0000-0002-5227-9627; 0000-0002-7349-1387; 0000-0003-1887-1966; 0000-0001-8768-2179; 0000-0002-9594-1879; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Multiplicity in massive stars is key to understanding the chemical and dynamical evolution of galaxies. Among massive stars, those of O type play a crucial role due to their high masses and short lifetimes. Aims. MONOS (Multiplicity Of Northern O-type Spectroscopic systems) is a project designed to collect information and study O-type spectroscopic binaries with δ > −20°. In this first paper we describe the sample and provide spectral classifications and additional information for objects with previous spectroscopic and/or eclipsing binary orbits. In future papers we will test the validity of previous solutions and calculate new spectroscopic orbits. Methods. The spectra in this paper have two sources: the Galactic O-Star Spectroscopic Survey (GOSSS), a project that obtains blue-violet R ∼ 2500 spectroscopy of thousands of massive stars, and LiLiMaRlin, a library of libraries of high-resolution spectroscopy of massive stars obtained from four different surveys (CAFÉ-BEANS, OWN, IACOB, and NoMaDS) and additional data from our own observing programs and public archives. We have also used lucky images obtained with AstraLux. Results. We present homogeneous spectral classifications for 92 O-type spectroscopic multiple systems and ten optical companions, many of them original. We discuss the visual multiplicity of each system with the support of AstraLux images and additional sources. For eleven O-type objects and for six B-type objects we present their first GOSSS spectral classifications. For two known eclipsing binaries we detect double absorption lines (SB2) or a single moving line (SB1) for the first time, to which we add a third system reported by us recently. For two previous SB1 systems we detect their SB2 nature for the first time and give their first separate spectral classifications, something we have also done for a third object just recently identified as a SB2. We also detect nine new astrometric companions and provide updated information on several others. We emphasize the results for two stars: for σ Ori AaAbB we provide spectral classifications for the three components with a single observation for the first time thanks to a lucky spectroscopy observation obtained close to the Aa,Ab periastron and for θ1 Ori CaCb we add it to the class of Galactic Of?p stars, raising the number of its members to six. Our sample of O-type spectroscopic binaries contains more triple- or higher-order systems than double systems.