Examinando por Autor "Ehrenreich, D."
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii(EDP Sciences, 2021-02-19) Bonfanti, A.; Delrez, L.; Hooton, M. J.; Wilson, T. G.; Fossati, L.; Alibert, Y.; Hoyer, S.; Mustill, A. J.; Osborn, H. P.; Adibekyan, V.; Gandolfi, D.; Van Eylen, V.; Viotto, V.; Walter, I.; Walton, N. A.; Wildi, F.; Wolter, D.; Salmon, S.; Sousa, S. G.; Tuson, A.; Van Grootel, V.; Cabrera, J.; Nascimbeni, V.; Maxted, P. F. L.; Barros, S. C. C.; Billot, N.; Bonfils, X.; Borsato, L.; Broeg, C.; Davies, M. B.; Deleuil, M.; Demangeon, O. D. S.; Fridlund, M.; Lacedelli, G.; Lendl, M.; Persson, C.; Santos, N. C.; Scandariato, G.; Szabó, Gy. M.; Collier Cameron, A.; Udry, S.; Benz, W.; Beck, M.; Ehrenreich, D.; Fortier, A.; Isaak, K. G.; Queloz, D.; Alonso, R.; Asquier, J.; Bandy, T.; Bárczy, T.; Barrado, D.; Barragán, O.; Baumjohann, W.; Beck, T.; Bekkelien, A.; Bergomi, M.; Brandeker, A.; Busch, M. D.; Cessa, V.; Charnoz, S.; Chazelas, B.; Van Damme, C. C.; Demory, B. O.; Erikson, A.; Farinato, J.; Futyan, D.; García Muñoz, Antonio; Gillon, M.; Guedel, M.; Guterman, P.; Hasiba, J.; Heng, K.; Hernández, E.; Kiss, L.; Kuntzer, T.; Laskar, J.; Lecavelier des Etangs, A.; Lovis, C.; Magrin, D.; Malvasio, L.; Marafatto, L.; Michaelis, H.; Munari, M.; Olofsson, G.; Ottacher, H.; Ottensamer, R.; Pagano, I.; Pallé, E.; Peter, G.; Piazza, D.; Piotto, G.; Pollacco, D.; Ragazzoni, R.; Rando, N.; Ratti, F.; Rauer, H.; Ribas, I.; Rieder, M.; Rohlfs, R.; Safa, F.; Salatti, M.; Ségransan, D.; Simon, A. E.; Smith, A. M. S.; Sordet, Michael; Steller, M.; Thomas, N.; Tschentscher, M.; Swiss Space Office (SSO); La Silla Observatory; Austrian Research Promotion Agency (FFG); European Research Council (ERC); Swiss National Science Foundation (SNSF); Agencia Estatal de Investigación (AEI); Generalitat de Catalunya; European Space Agency (ESA); Fundacao para a Ciencia e a Tecnologia (FCT); Belgian Federal Science Policy Office (BELSPO); Hungarian National Research, Development and Innovation Office (NKFIH); Istituto Nazionale di Astrofisica (INAF); Swedish National Infrastructure for Computing (SNIC); Bonfanti, A. [0000-0002-1916-5935]; Cameron, A. [0000-0002-8863-7828]; Santos, N. [0000-0003-4422-2919]; Mustill, A. J. [0000-0002-2086-3642]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R⋆ = 0.877 ± 0.008 R⊙, M⋆ = 0.869−0.048+0.050 M⊙, and an age of 6.7−5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539−0.065+0.062, 3.083 ± 0.052, and 2.017−0.057+0.052 R⊕ for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.Publicación Acceso Abierto HST PanCET program: non-detection of atmospheric escape in the warm Saturn-sized planet WASP-29 b(EDP Sciences, 2021-05-07) Dos Santos, L. A.; Bourrier, V.; Ehrenreich, D.; Sanz Forcada, J.; López Morales, M.; Sing, D. K.; García Muñoz, Antonio; Henry, G. W.; Lavvas, P.; Lecavelier des Etangs, A.; Mikal Evans, T.; Vidal Madjar, A.; Wakeford, H. R.; Centre National D'Etudes Spatiales (CNES); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Dos Santos, L. A. [0000-0002-2248-3838]; Sanz Forcada, J. [0000-0002-1600-7835]; López Morales, M. [0000-0003-3204-8183]; Sing, D. K. [0000-0001-6050-7645]; García Muñoz, A. [0000-0003-1756-4825]; Henry, G. W. [0000-0003-4155-8513]; Lecavelier des Etangs, A. [0000-0002-5637-5253]; Mikal Evans, T. [0000-0001-5442-1300]Short-period gas giant exoplanets are susceptible to intense atmospheric escape due to their large scale heights and strong high-energy irradiation. This process is thought to occur ubiquitously, but to date we have only detected direct evidence of atmospheric escape in hot Jupiters and warm Neptunes. The latter planets are particularly more sensitive to escape-driven evolution as a result of their lower gravities with respect to Jupiter-sized planets. But the paucity of cases for intermediate, Saturn-sized exoplanets at varying levels of irradiation precludes a detailed understanding of the underlying physics in atmospheric escape of hot gas giants. Aiming to address this issue, our objectives here are to assess the high-energy environment of the warm (Teq = 970 K) Saturn WASP-29 b and search for signatures of atmospheric escape. We used far-ultraviolet observations from the Hubble Space Telescope to analyze the flux time series of H I, C II, Si III, Si IV, and N V during the transit of WASP-29 b. At 88 pc, a large portion of the Lyman-α core of the K4V-type host WASP-29 is attenuated by interstellar medium absorption, limiting our ability to probe the escape of H at velocities between −84 and +35 km s−1. At 3σ confidence, we rule out any in-transit absorption of H I larger than 92% in the Lyman-α blue wing and 19% in the red wing. We found an in-transit flux decrease of 39%−11%+12% in the ground-state C II emission line at 1334.5 Å. But due to this signal being significantly present in only one visit, it is difficult to attribute a planetary or stellar origin to the ground-state C II signal. We place 3σ absorption upper limits of 40, 49, and 24% on Si III, Si IV, and for excited-state C II at 1335.7 Å, respectively. Low activity levels and the faint X-ray luminosity suggest that WASP-29 is an old, inactive star. Nonetheless, an energy-limited approximation combined with the reconstructed EUV spectrum of the host suggests that the planet is losing its atmosphere at a relatively large rate of 4 × 109 g s−1. The non-detection at Lyman-α could be partly explained by a low fraction of escaping neutral hydrogen, or by the state of fast radiative blow-out we infer from the reconstructed Lyman-α line.Publicación Acceso Abierto The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS(EDP Sciences, 2020-11-09) Lendl, M.; Csizmadia, Sz.; Deline, A.; Fossati, L.; Kitzmann, D.; Heng, K.; Hoyer, S.; Salmon, S.; Benz, W.; Broeg, C.; Ehrenreich, D.; Malvasio, L.; Marafatto, L.; Michaelis, H.; Munari, M.; Nascimbeni, V.; Olofsson, G.; Ottacher, H.; Ottensamer, R.; Pagano, I.; Pallé, E.; Peter, G.; Pizza, D.; Piotto, G.; Pollacco, D.; Ratti, F.; Rauer, H.; Ragazzoni, R.; Rando, N.; Ribas, I.; Rieder, M.; Rohlfs, R.; Safa, F.; Santos, N. C.; Scandariato, G.; Ségransan, D.; Simón, A. E.; Singh, V.; Smith, A. M. S.; Sordet, Michael; Sousa, S. G.; Steller, M.; Szabó, Gy. M.; Thomas, N.; Tschentscher, M.; Udry, S.; Viotto, V.; Walter, I.; Walton, N. A.; Wildi, F.; Wolter, D.; Fortier, A.; Queloz, D.; Bonfanti, A.; Brandeker, A.; Collier Cameron, A.; Delrez, L.; García Muñoz, Antonio; Hooton, M. J.; Maxted, P. F. L.; Morris, B. M.; Van Grootel, V.; Wilson, T. G.; Alibert, Y.; Alonso, R.; Asquier, J.; Bandy, T.; Bárczy, T.; Barrado, D.; Barros, S. C. C.; Baumjohann, W.; Beck, M.; Beck, T.; Bekkelien, A.; Bergomi, M.; Billot, N.; Biondi, F.; Bonfils, X.; Bourrier, V.; Busch, M. D.; Cabrera, J.; Cessa, V.; Charnoz, S.; Chazelas, B.; Corral Van Damme, C.; Davies, M. B.; Deleuil, M.; Demangeon, O. D. S.; Demory, B. O.; Erikson, A.; Farinato, J.; Fridlund, M.; Futyan, D.; Gandolfi, D.; Gillon, M.; Guterman, P.; Hasiba, J.; Hernández, E.; Isaak, K. G.; Kiss, L.; Kuntzer, T.; Lecavelier des Etangs, A.; Lüftinger, T.; Laskar, J.; Lovis, C.; Magrin, D.; Austrian Research Promotion Agency (FFG); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Swiss National Science Foundation (SNSF); Agencia Estatal de Investigación (AEI); Fundação para a Ciência e a Tecnologia (FCT); National Research Development and Innovation Office, Hungarian (NKFIH); Agenzia Spaziale Italiana (ASI); Generalitat de Catalunya; European Space Agency (ESA); Fundacao para a Ciencia e a Tecnologia (FCT); Belgian Federal Science Policy Office (BELSPO); Istituto Nazionale di Astrofisica (INAF); Wilson, T. G. [0000-0001-8749-1962]; Cameron, A. [0000-0002-8863-7828]; Fridlund, M. [0000-0002-0855-8426]; Cabrera, J. [0000-0001-6653-5487]; Barros, S. [0000-0003-2434-3625]; Santos, N. [0000-0003-4422-2919]; Piotto, G. [0000-0002-9937-6387]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4−4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of Ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.Publicación Acceso Abierto The Hubble PanCET program: long-term chromospheric evolution and flaring activity of the M dwarf host GJ 3470(EDP Sciences, 2021-06-08) Bourrier, V.; Dos Santos, L. A.; Sanz Forcada, J.; García Muñoz, Antonio; Henry, G. W.; Lavvas, P.; Lecavelier, A.; López Morales, M.; Mikal Evans, T.; Sing, D. K.; Wakeford, H. R.; Ehrenreich, D.; European Research Council (ERC)Neptune-size exoplanets seem particularly sensitive to atmospheric evaporation, making it essential to characterize the stellar high-energy radiation that drives this mechanism. This is particularly important with M dwarfs, which emit a large and variable fraction of their luminosity in the ultraviolet and can display strong flaring behavior. The warm Neptune GJ 3470b, hosted by an M2 dwarf, was found to harbor a giant exosphere of neutral hydrogen thanks to three transits observed with the Hubble Space Telescope Imaging Spectrograph (HST/STIS). Here we report on three additional transit observations from the Panchromatic Comparative Exoplanet Treasury program, obtained with the HST Cosmic Origin Spectrograph. These data confirm the absorption signature from GJ 3470b’s exosphere in the stellar Lyman-α line and demonstrate its stability over time. No planetary signatures are detected in other stellar lines, setting a 3σ limit on GJ 3470b’s far-ultraviolet (FUV) radius at 1.3 times its Roche lobe radius. We detect three flares from GJ 3470. They show different spectral energy distributions but peak consistently in the Si III line, which traces intermediate-temperature layers in the transition region. These layers appear to play a particular role in GJ 3470’s activity as emission lines that form at lower or higher temperatures than Si III evolved differently over the long term. Based on the measured emission lines, we derive synthetic X-ray and extreme-ultraviolet (X+EUV, or XUV) spectra for the six observed quiescent phases, covering one year, as well as for the three flaring episodes. Our results suggest that most of GJ 3470’s quiescent high-energy emission comes from the EUV domain, with flares amplifying the FUV emission more strongly. The neutral hydrogen photoionization lifetimes and mass loss derived for GJ 3470b show little variation over the epochs, in agreement with the stability of the exosphere. Simulations informed by our XUV spectra are required to understand the atmospheric structure and evolution of GJ 3470b and the role played by evaporation in the formation of the hot-Neptune desert.Publicación Acceso Abierto Transmission Spectroscopy of WASP-79b from 0.6 to 5.0 μm(The Institute of Physics (IOP), 2020-01-10) Sotzen, K. S.; Stevenson, K. B.; Sing, D. K.; Kilpatrick, B. M.; Wakeford, H. R.; Filippazzo, J. C.; Lewis, N. K.; Hörst, S. M.; López Morales, M.; Henry, G. W.; Buchhave, L. A.; Ehrenreich, D.; Fraine, J. D.; García Muñoz, Antonio; Jayaraman, R.; Lavvas, P.; Des Etangs, A. L.; Marley, M. S.; Nikolov, N.; Rathcke, A. D.; Sánz Forcada, J.; European Research Council (ERC); National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); 0000-0001-7393-2368; 0000-0002-7352-7941; 0000-0001-6050-7645; 0000-0003-4220-600X; 0000-0003-4328-3867; 0000-0002-0201-8306; 0000-0002-8507-1304; 0000-0003-4596-0702; 0000-0003-4155-8513; 0000-0003-1605-5666; 0000-0001-9704-5405; 0000-0003-1756-4825; 0000-0002-5360-3660; 0000-0002-5251-2943; 0000-0002-6500-3574; 0000-0002-1600-7835As part of the Panchromatic Exoplanet Treasury program, we have conducted a spectroscopic study of WASP-79b, an inflated hot Jupiter orbiting an F-type star in Eridanus with a period of 3.66 days. Building on the original WASP and TRAPPIST photometry of Smalley et al., we examine Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) (1.125–1.650 μm), Magellan/Low Dispersion Survey Spectrograph (LDSS)-3C (0.6–1 μm) data, and Spitzer data (3.6 and 4.5 μm). Using data from all three instruments, we constrain the water abundance to be −2.20 ≤ log(H2O) ≤ −1.55. We present these results along with the results of an atmospheric retrieval analysis, which favor inclusion of FeH and H− in the atmospheric model. We also provide an updated ephemeris based on the Smalley, HST/WFC3, LDSS-3C, Spitzer, and Transiting Exoplanet Survey Satellite (TESS) transit times. With the detectable water feature and its occupation of the clear/cloudy transition region of the temperature/gravity phase space, WASP-79b is a target of interest for the approved James Webb Space Telescope (JWST) Director's Discretionary Early Release Science (ERS) program, with ERS observations planned to be the first to execute in Cycle 1. Transiting exoplanets have been approved for 78.1 hr of data collection, and with the delay in the JWST launch, WASP-79b is now a target for the Panchromatic Transmission program. This program will observe WASP-79b for 42 hr in four different instrument modes, providing substantially more data by which to investigate this hot Jupiter.