Examinando por Autor "Harada, N."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto ALMA observations of CS in NGC 1068: Chemistry and excitation(Oxford Academics: Blackwell Publishing, 2020-07-02) Scourfield, M.; Viti, S.; García Burillo, S.; Saintonge, A.; Combes, F.; Fuente, A.; Henkel, C.; Alonso Herrero, A.; Harada, N.; Takano, S.; Nakajima, T.; Martín, S.; Krips, M.; Van der Werf, P. P.; Aalto, S.; Usero, A.; Kohno, K.; Agencia Estatal de Investigación (AEI); Alonso Herrero, A. [0000-0001-6794-2519]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We present results from Atacama Large Millimeter/submillimeter Array (ALMA) observations of CS from the nearby galaxy NGC 1068 (∼14 Mpc). This Seyfert 2 barred galaxy possesses a circumnuclear disc (CND, r ∼ 200 pc) and a starburst ring (SB ring, r ∼ 1.3 kpc). These high-resolution maps (∼0.5 arcsec, ∼35 pc) allow us to analyse specific sub-regions in the galaxy and investigate differences in line intensity ratios and physical conditions, particularly those between the CND and SB ring. Local thermodynamic equilibrium (LTE) analysis of the gas is used to calculate CS densities in each sub-region, followed by the non-LTE analysis conducted using the radiative transfer code RADEX to fit observations and constrain gas temperature, CS column density and hydrogen density. Finally, the chemical code UCLCHEM is used to reconstruct the gas, allowing an insight into its origin and chemical history. The density of hydrogen in the CND is found to be ≥105 cm−2, although exact values vary, reaching 106 cm−2 at the active galactic nucleus. The conditions in the two arms of the SB ring appear similar to one another, though the density found (∼104 cm−2) is lower than in the CND. The temperature in the CND increases from east to west, and is also overall greater than found in the SB ring. These modelling methods indicate the requirement for multiphase gas components in order to fit the observed emission over the galaxy. A larger number of high-resolution transitions across the SLED may allow for further constraining of the conditions, particularly in the SB ring.Publicación Acceso Abierto On the Effects of UV Photons/X-Rays on the Chemistry of the Sgr B2 Cloud(The Institute of Physics (IOP), 2020-05-26) Armijos Abendaño, J.; Martín Pintado, J.; López, E.; Llerena, M.; Harada, N.; Requeña Torres, M. A.; Martín, S.; Rivilla, V. M.; Riquelme, D.; Aldas, F.; Comisión Nacional de Investigación Científica y Tecnológica (CONICYT); European Research Council (ERC); Armijos Abendaño, J. [0000-0003-3341-6144]; Llerena, M. [0000-0003-1354-4296]; Martín, S. [0000-0001-9281-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The lines of HOC+, HCO, and CO+ are considered good tracers of photon-dominated regions (PDRs) and X-ray-dominated regions. We study these tracers toward regions of the Sgr B2 cloud selected to be affected by different heating mechanisms. We find the lowest values of the column density ratios of HCO+ versus HOC+, HCO, and CO+ in dense H ii gas, where UV photons dominate the heating and chemistry of the gas. The HOC+, HCO, and CO+ abundances and the above ratios are compared with those of chemical modeling, finding that high-temperature chemistry, a cosmic-ray ionization rate of 10(-16) s(-1), and timescales >10(5.0) yr explain well the HOC+ abundances in quiescent Sgr B2 regions, while shocks are also needed to explain the highest HCO abundances derived for these regions. The CO+ is mainly formed in PDRs, since the highest CO+ abundances of similar to(6-10) x 10(-10) are found in H ii regions with electron densities >540 cm(-3) and CO+ emission is undetected in quiescent gas. Among the ratios, the HCO+/HCO ratio is sensitive to the electron density, as it shows different values in dense and diffuse H ii regions. We compare SiO J = 2-1 emission maps of Sgr B2 with X-ray maps from 2004 and 2012. One known spot shown on the 2012 X-ray map is likely associated with molecular gas at velocities of 15-25 km s(-1). We also derive the X-ray ionization rate of similar to 10(-19) s(-1) for Sgr B2 regions pervaded by X-rays in 2004, which is quite low to affect the chemistry of the molecular gas.Publicación Acceso Abierto Planetary system LHS 1140 revisited with ESPRESSO and TESS(EDP Sciences, 2020-10-15) Lillo Box, J.; Figueira, P.; Leleu, A.; Acuña, L.; Faria, J. P.; Harada, N.; Santos, N. C.; Correia, A. C. M.; Robutel, P.; Deleuil, M.; Barrado, D.; Sousa, S. G.; Bonfils, X.; Mousis, O.; Almenara, J. M.; Astudillo Defru, N.; Marcq, E.; Udry, S.; Lovis, C.; Pepe, F.; Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); European Commission (EC); Faria, J. [0000-0002-6728-244X]; Correia, A. C. M. [0000-0002-8946-8579]; Leleu, A. [0000-0003-2051-7974]; Lillo Box, J. [0000-0003-3742-1987]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. LHS 1140 is an M dwarf known to host two transiting planets at orbital periods of 3.77 and 24.7 days. They were detected with HARPS and Spitzer. The external planet (LHS 1140 b) is a rocky super-Earth that is located in the middle of the habitable zone of this low-mass star. All these properties place this system at the forefront of the habitable exoplanet exploration, and it therefore constitutes a relevant case for further astrobiological studies, including atmospheric observations. Aims. We further characterize this system by improving the physical and orbital properties of the known planets, search for additional planetary-mass components in the system, and explore the possibility of co-orbitals. Methods. We collected 113 new high-precision radial velocity observations with ESPRESSO over a 1.5-yr time span with an average photon-noise precision of 1.07 m s−1. We performed an extensive analysis of the HARPS and ESPRESSO datasets and also analyzed them together with the new TESS photometry. We analyzed the Bayesian evidence of several models with different numbers of planets and orbital configurations. Results. We significantly improve our knowledge of the properties of the known planets LHS 1140 b (Pb ~ 24.7 days) and LHS 1140 c (Pc ~ 3.77 days). We determine new masses with a precision of 6% for LHS 1140 b (6.48 ± 0.46 M⊕) and 9% for LHS 1140 c (mc = 1.78 ± 0.17 M⊕). This reduces the uncertainties relative to previously published values by half. Although both planets have Earth-like bulk compositions, the internal structure analysis suggests that LHS 1140 b might be iron-enriched and LHS 1140 c might be a true Earth twin. In both cases, the water content is compatible to a maximum fraction of 10–12% in mass, which is equivalent to a deep ocean layer of 779 ± 650 km for the habitable-zone planet LHS 1140 b. Our results also provide evidence for a new planet candidate in the system (md = 4.8 ± 1.1M⊕) on a 78.9-day orbital period, which is detected through three independent methods. The analysis also allows us to discard other planets above 0.5 M⊕ for periods shorter than 10 days and above 2 M⊕ for periods up to one year. Finally, our co-orbital analysis discards co-orbital planets in the tadpole and horseshoe configurations of LHS 1140 b down to 1 M⊕ with a 95% confidence level (twice better than with the previous HARPS dataset). Indications for a possible co-orbital signal in LHS 1140 c are detected in both radial velocity (alternatively explained by a high eccentricity) and photometric data (alternatively explained by systematics), however. Conclusions. The new precise measurements of the planet properties of the two transiting planets in LHS 1140 as well as the detection of the planet candidate LHS 1140 d make this system a key target for atmospheric studies of rocky worlds at different stellar irradiations.