Examinando por Autor "Vieira, G."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Frozen ground and snow cover monitoring in Livingston and Deception islands, Antarctica: preliminary results of the 2015-2019 PERMASNOW project(Universidad de la Rioja, 2020-02-15) De Pablo, M. A.; Jiménez, J. J.; Ramos, M.; Prieto, M.; Molina, A.; Vieira, G.; Hidalgo, M. A.; Fernández, S.; Fernández Menéndez, Susana del Carmen; Calleja, J. F.; Peón, J. J.; Corbea Pérez, A.; Maior, C. N.; Morales, M.; Mora, C.; Ministerio de Economía y Competitividad (MINECO); Universidad de Alcalá; 0000-0002-5038-2022; 0000-0002-0843-3658; 0000-0001-7551-2236; 0000-0002-4496-2741; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to overcome this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data front our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.Publicación Acceso Abierto Transition from a Subaerial to a Subnival Permafrost Temperature Regime Following Increased Snow Cover (Livingston Island, Maritime Antarctic)(Multidisciplinary Digital Publishing Institute (MDPI), 2020-12-08) Ramos, M.; Vieira, G.; De Pablo, M. A.; Molina, A.; Jiménez Martín, Juan José; Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Fundacao para a Ciencia e a Tecnologia (FCT); Ramos, M. [0000-0003-3648-6818]; Vieira, G. [0000-0001-7611-3464]; De Pablo, M. Á. [0000-0002-4496-2741]; Jiménez Cuenca, J. J. [0000-0001-7677-8140]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Antarctic Peninsula (AP) region has been one of the regions on Earth with strongest warming since 1950. However, the northwest of the AP showed a cooling from 2000 to 2015, which had local consequences with an increase in snow accumulation and a deceleration in the loss of mass from glaciers. In this paper, we studied the effects of increased snow accumulation in the permafrost thermal regime in two boreholes (PG1 and PG2) in Livingston Island, South Shetlands Archipelago, from 2009 to 2015. The two boreholes located c. 300 m apart but at similar elevation showed different snow accumulation, with PG2 becoming completely covered with snow all year long, while the other remained mostly snow free during the summer. The analysis of the thermal regimes and of the estimated soil surface energy exchange during the study period showed the effects of snow insulation in reducing the active layer thickness. These effects were especially relevant in PG2, which transitioned from a subaerial to a subnival regime. There, permafrost aggraded from below, with the active layer completely disappearing and the efficiency of thermal insulation by the snowpack prevailing in the thermal regime. This situation may be used as an analogue for the transition from a periglacial to a subglacial environment in longer periods of cooling in the paleoenvironmental record. View Full-Text